Due: Tuesday, August 19th 2003

- 1. Let Y_1, Y_2, \dots, Y_n be independent random variables, each uniformly distributed over the interval $(0, \theta)$. Show that $\max\{Y_1, \dots, Y_n\}$ converges in probability toward θ as $n \to \infty$.
- 2. Let $a_n = \sum_{k=0}^n \frac{n^k}{k!} e^{-n}$, $n \ge 1$. Using the Central Limit Theorem evaluate $\lim_{n \to \infty} a_n$.
- 3. Let $Y \stackrel{d}{=} N(0,1)$. Let $X_n = (-1)^n Y$. Discuss convergence a.e, in probability, and in distribution of X_n .
- 4. Let Y be a discrete random variable taking values in \mathbb{N} . Show that
 - (a) $E(Y) = \sum_{n=1}^{\infty} P(Y \ge n)$.
 - (b) Assume $E(Y) = \infty$. Let Y_n be i.i.d copies of Y. Let $X_n = \frac{Y_n}{n}$. Show that $X_n \stackrel{p}{\to} 0$ but X_n does not converge a.e.
- 5. If Y_n is $O_p(\frac{1}{\sqrt{n}})$ then show that Y_n is $o_p(1)$.
- 6. For $n \geq 1$, let $0 \leq p_n \leq 1$ and $\lim_{n \to \infty} p_n = 0$. Consider

$$X_n = \begin{cases} 1 & \text{w.p. } p_n \\ 0 & \text{w.p. } 1 - p_n. \end{cases}$$

Let $Y_n = \prod_{k=1}^n X_k$. Workout explicit conditions on the sequence $\{p_n\}$ that ensure (a) $Y_n \stackrel{p}{\to} 0$, or

(b) $Y_n \stackrel{p}{\to} 1$ or (c) for any $0 \le \alpha \le 1, Y_n \stackrel{d}{\longrightarrow} Y$, where

$$Y = \left\{ \begin{array}{ll} 1 & \text{w.p. } \alpha \\ 0 & \text{w.p. } 1 - \alpha. \end{array} \right.$$

- 7. Let $c \in \mathbb{R}$. Let Y_n, Y be a sequence of random variables. Let g is a continuous function
 - (a) If $Y_n \xrightarrow{a.e.} Y$ then show that $g(Y_n) \xrightarrow{a.e.} g(Y)$.
 - (b) If $Y_n \stackrel{p}{\to} c$ then show that $g(Y_n) \stackrel{p}{\to} g(c)$.
- 8. Consider the t-distribution with n degrees of freedom. Show that this distribution converges weakly to the standard Normal distribution as $n \to \infty$.
- 9. Let X_n be a sequence of random variables. Let X be a degenerate random variable. Suppose $X_n \xrightarrow{d} X$, then show that $X_n \xrightarrow{p} X$.
- 10. Let X, X_n be a sequence of random variables. Let g be a bounded continuous function. Suppose $X_n \stackrel{d}{=} X$ then there exists a probability space (Ω, \mathcal{F}, P) such that $\lim_{n \to \infty} Eg(X_n) = Eg(X)$.
- 11. Let $X_n \stackrel{d}{=} B(n,p)$. Let $\hat{p}_n = \frac{X_n}{n}$. Let $g(t) = \sin^{-1}(\sqrt{t}), 0 \le t \le 1$. Compute the assymptotic distribution of $\sqrt{n}[g(\hat{p}_n) g(p)]$.
- 12. Let X_n be a sequence of i.i.d. Poisson (θ) random variables and $T_n = \frac{X_1 + X_2 + ... X_n}{n}$. Define $g(t) = \sqrt{t}, t \geq 0$. Then compute the assymptotic distribution as $\sqrt{N}(g(T_n) g(\theta))$.

Problems to be turned in are: 1,4,5,8,11