Question: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers and let $\left\{z_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers such that $z_{n}=x_{n}+y_{n}$ for all $n \in \mathbb{N}$. Show that

$$
\liminf _{n \rightarrow \infty} z_{n} \geq \liminf _{n \rightarrow \infty} x_{n}+\liminf _{n \rightarrow \infty} y_{n}
$$

provided that the sum on the right hand side is not of the form $\infty-\infty$.

Solution:

Let $X=\liminf _{n \rightarrow \infty} x_{n}, Y=\liminf _{n \rightarrow \infty} y_{n}, Z=\liminf _{n \rightarrow \infty} z_{n}$.
Case 1: Both X and Y are finite
For any $\epsilon>0$, only a finite number of terms of $\left\{x_{n}\right\}_{n=1}^{\infty}$ are less than $X-\epsilon / 2$; and only a finite number of terms of $\left\{y_{n}\right\}_{n=1}^{\infty}$ are less than $Y-\epsilon / 2$. Suppose for some $k \in \mathbb{N}, x_{k} \geq X-\epsilon / 2$, and $y_{k} \geq Y-\epsilon / 2$. Then $z_{k}=x_{k}+y_{k} \geq X+Y-\epsilon$. Hence if $z_{p}<X+Y-\epsilon$, then $x_{p}<X-\epsilon / 2$ or $y_{p}<Y-\epsilon / 2$. As the number of p for which the second condition is satisfied is finite, the number of p for which $z_{p}<X+Y-\epsilon$ is also finite.

We will show by contradiction that $Z \geq X+Y$. Suppose $Z<X+Y$. Let $\epsilon=$ $(X+Y-Z) / 2$. As Z is a limit point of $\left\{z_{n}\right\}_{n=1}^{\infty}$, there exist infinitely many p for which $\left|z_{p}-Z\right|<\epsilon$. But $\left|z_{p}-Z\right|<\epsilon$ implies $z_{p}<X+Y-\epsilon$, and we know that there are only finitely many p for which $z_{p}<X+Y-\epsilon$. This is a contradiction, and hence $Z \geq X+Y$.
Case 2: At least one of X and Y is non-finite
Assume without loss of generality that X is non-finite. It is given that $\{X, Y\} \neq$ $\{\infty,-\infty\}$. If $X=-\infty$, then $X+Y=-\infty$. In this case, clearly $Z \geq X+Y$. Now consider the case when $X=\infty$. As $Y \neq-\infty$, the sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ is bounded below by, say, M. For, if it did not have a lower bound, it would have a subsequence converging to $-\infty$, which contradicts the fact that $Y \neq-\infty$.

As $\limsup \operatorname{sum}_{n \rightarrow \infty} x_{n} \geq X, \lim \sup _{n \rightarrow \infty} x_{n}=\infty=X$. Hence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to ∞. For all $P \in \mathbb{R}$, there exists a $N_{0} \in \mathbb{N}$ such that $x_{n}>P-M$ for all $n \geq n_{0} . x_{n}>P-M$ implies $x_{n}+M>P$, which implies $x_{n}+y_{n}>P$. Hence for all $P \in \mathbb{R}$, there exists a $N_{0} \in \mathbb{N}$ such that $z_{n}>P$ for all $n \geq n_{0}$. This shows that $\left\{z_{n}\right\}_{n=1}^{\infty}$ converges to ∞ and so $Z=\infty$. Hence $Z \geq \infty=X+Y$.

