Due: April, 10th 2003.

Let (Ω, \mathcal{F}, P) be a probability space. Let B_t be a Brownian motion adapated to the filtration \mathcal{F}_t

1. Let the market rate be given by an adapted process r(t). Suppose the stock price process S(t) satisfies the following Stochastic Differential equation

$$dS(t) = \mu(t)S(t)dt + \sigma(t)S(t)dB(t),$$

with σ and μ being adapted to \mathcal{F}_t .

- (a) Describe the risk neutral measure via the radon nikodym derivative with respect to P.
- (b) Using the martingale representation theorem, describe the hedging portfolio process $\Delta(\cdot)$ in terms of σ , μ , r and S for a contigency claim with payoff V at time T.
- 2. Let $\sigma(t) \equiv \sigma$, $\mu(t) \equiv \mu$, $r(t) \equiv r$. (i.e. all these functions are constant in time). Suppose there are two stock prices S and S1 where S1(t) satisfies the following Stochastic Differential equation

$$dS1(t) = \mu 1S1(t)dt + \sigma 1S1(t)dB(t).$$

If $\frac{\mu-r}{\sigma} \neq \frac{\mu 1-r}{\sigma 1}$ then show that the market admits arbitrage.