Due: April, 4th 2003.

1. Let B(t) be a standard Brownian motion starting at 0 on (Ω, \mathcal{F}, P) . Let X(t) be a solution of the stochastic differential equation:

$$dX(t) = b(X(t))dt + \sigma(X(t))dB(t)$$

(a) Let b(x) = bx and $\sigma(x) = \sigma x$. Derive an expression the transition density p(s, t; x, y) for the above proces and verify that it satisfies kolmogorov backward equation:

$$p_s + bxp_x + \frac{1}{2}\sigma^2 x^2 p_x x = 0$$

- (b) Let b and σ be lipschitz continuous functions. Let $0 \le t \le T$ and $v(t,x) = E^{t,x}(h(X(T)))$. Assume that X has a transition density p(s,t;x,y). Using the fact that v(t,x) satisfies the Kolmogrov backward equation, show that p also does.
- 2. Let B(t) be a standard Brownian motion starting at 0 on (Ω, \mathcal{F}, P) . Let $T_b = \inf\{t : B_t = b\}$.
 - (a) (Reflection principle) Now argue heurisitcally

$$P(T_b < t \cap B_t < b) = P(T_b < t \cap B_t > b).$$

How would you make this argument rigourous?

(b) Suppose $f_b(y)$ was the density of the random variable T_b show that

$$f_b(t) = \begin{cases} 0 & t \le 0\\ \frac{|b|}{\sqrt{2\pi t^3}} e^{-\frac{b^2}{2t}} & t > 0 \end{cases}$$