Due: January 24th. ## Key words- $Mathematics: \sigma-$ algebra, generators, random variable, conditional expectation, martingales. Finance: Simple European Derivative Security, Hedgeable, Portfolio process, Self-financing value, Arbitrage pricing theory (APT) value. - 1. Define what is meant by the generator(s) of a σ -algebra. - 2. Consider the Binomial model with n=4 as defined in class (not in the previous assignment). Let Ω_4 and $\mathcal{F} = \mathcal{P}(\Omega_4)$. Describe \mathcal{F}_1 and its generators. Describe \mathcal{F}_3 . - 3. Cards are drawn from an ordinary deck of 52, one at a time, randomly and with replacement. Let X and Y denote the number of draws until the first ace and first king are drawn, respectively. Find E(X|Y=5). - 4. Suppose that X and Y are random variables with joint probability density $$f(x,y) = \begin{cases} \frac{4}{5}(xy+1) & \text{if } 0 \le x \le 1 \text{ and } 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$ - (a) Are X and Y independent? - (b) Compute the marginal densities $f_X(x)$, $f_Y(y)$ and the conditional density $f_{X|Y}(x|y)$. - (c) Calculate the means μ_X , μ_Y , the variances σ_X^2 , σ_Y^2 and the covariance σ_{XY} . - (d) Calculate $E(X^2 + Y^2)$. - 5. Consider the Binomial model with n=3 as defined in class (not in the previous assignment). Let the probability of getting a head in a coin toss be $\frac{1}{4}$. Let u=4 and d=0.25 Show that $E(S_3 \mid \mathcal{F}_2)(\omega)=1.33S_2(\omega), \forall \omega \in \Omega_3$ - 6. Consider the Binomial model with generic n as defined in class (not in the previous assignment). Show that the self-financing value of the portfolio process X_k is a martingale with respect to \mathcal{F}_k and conclude that it satisfies the following property $$\tilde{E}((1+r)^{-k}X_k \mid \mathcal{F}_l) = (1+r)^{-l}X_l,$$ where l < k < n and \tilde{E} is the expectation under the risk neutral measure.