Problems due: 1, 2(b)
Due date: 3rd, November 2010

1. Let $f: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} functions. Show that the following

$$
u_{t}+b u_{x}=f, t>0, x \in R u(0, x)=g(x)
$$

has a unique solution given by

$$
u(t, x)=g(x-t b)+\int_{0}^{t} f(s, x+(s-t) b) d s
$$

2. Using the method of characteristics solve :
(a) $x u_{y}-y u_{x}=u, x>0, y>0 \in \mathbb{R}, \quad u(x, 0)=g(x), x \in \mathbb{R}$
(b) $\quad u_{x}+x u_{y}=u, x>1, y \in \mathbb{R}, \quad u(1, y)=h(y)$
(c) $2 x t u_{x}+u_{t}=u, t>0, x \in \mathbb{R} \quad u(0, x)=x$
