Problems due: 2,3

Due date: 28th, October 2010

1. Consider the ODE:

$$
\left(1+t^{2}\right) \frac{d^{2} x}{d t^{2}}(t)+2 t \frac{d x}{d t}(t)-2 x(t)=0
$$

Find the solution in terms of power series in t.
2. Consider the ODE:

$$
\frac{d^{2} x}{d t^{2}}(t)+t \frac{d x}{d t}(t)+x(t)=0 .
$$

Find the power series series solutions of the above and the corresponding radius of convergence.
3. Classify the singularities and find the roots of the indicial equation of :

$$
t^{3} \frac{d^{2} x}{d t^{2}}(t)+(\cos (2 t)-1) \frac{d x}{d t}(t)+2 t x(t)=0
$$

4. Classify the singularities and find the Frobenius solution(s) of the following ODEs:

$$
\begin{gathered}
t^{2} \frac{d^{2} x}{d t^{2}}(t)-3 t \frac{d x}{d t}(t)+(4 t+4) x(t)=0 \\
t \frac{d^{2} x}{d t^{2}}(t)+2 \frac{d x}{d t}(t)+t x(t)=0
\end{gathered}
$$

5. Consider the Bessel's equation :

$$
t^{2} \frac{d^{2} x}{d t^{2}}(t)+t \frac{d x}{d t}(t)+\left(t^{2}-\frac{1}{4}\right) x(t)=0
$$

Show that the indicial equation has two roots that differ by one. Can you still find two Frobenius series solutions?

