Hw 8

Problems to be turned in: 2,3
Due: Thursday March 24th, 2005

- 1. Problem 7 of Recktenwald, Numerical methods with Matlab
- 2. Problem 11 of Recktenwald, Numerical methods with Matlab
- 3. Consider the following table:

| $\boldsymbol{x}$ | y     |
|------------------|-------|
| 0.24             | 19.9  |
| 0.52             | 28.8  |
| 1.93             | 48.7  |
| 3.26             | 59.0  |
| 15.0             | 106.5 |

- (a) Construct a new table with  $\log_{10} x$  and  $\log_{10} y$ .
- (b) Assume that data in your table is close to satistfying

$$\alpha \log_{10} x + \beta = \log_{10} y$$

Construct the normal equations.

- (c) Solve the normal equations using the LU factorisation in MATLAB. Give L and U factors and your solution steps.
- (d) Plot the transformed data and the least-square line on the same axes.
- (e) Calculate the residual r and the  $R^2$  statistic. Plot the residual as function of x.
- 4. Let  $A_{3\times3}$  be an arbitrary matrix. Consider the rotation matrices  $Q_{ij}$  discussed in class. Can A be reduced to the following matrices by left multiplication with Q's.

5. Prove the following identity:

$$n \parallel r \parallel_2^2 = (\beta - \bar{y} + \alpha \bar{x}) + S_x^2 (\alpha - \frac{S_{xy}}{S_x^2})^2 + S_y^2 (1 - R^2).$$

Please refer to your class notes for the definition of the various terms.