Due: Thursday February 24th 2005

Problems to be turned: 3

- 1. Read code of the lupiv function in the NMM toolbox and explain how you will use it to solve Ax = b.
- 2. Starting with the code GEshow in the NMM toolbox develop a GErectangular function that performs Gaussian elimination only for a $m \times n$ matrix. The function should return \tilde{A} , the triangularised coefficient matrix, and \tilde{b} the corresponding right hand side vector.
- 3. Start with the pump curve code in the NMM toolbox. It is modelling the relationship between the pressure head h of the pump and q the flow rate. Add the following features:
 - (a) Modify the pump curve function to accept q and h vectors of arbitrary length as input.
 - (b) Consider q and h from the following table:

$q(m^3/s)$	0.0001	0.00025	0.0008	0.001	0.0014
h(m)	115	114.2	110	105.5	92.5

Using all data points above except the fourth, use your function to find the cubic polynomial interpolant. Let c be the coefficients of the polynomial.

- (c) Replace the second point to 114 from 114.2. Do as in previous part to get \tilde{c} .
- (d) Compute
 - i. the relative difference vector $d = \frac{\tilde{c} c}{c}$ for all i. Plot h vs q,
 - ii. largest difference in the value of h from 100 points between $\min(q)$ and $\max q$ in both the cases.
 - iii. Plot h vs q in both the cases for the 100 points.
 - iv. Discuss the practical significance on the pertubation of h values on the coefficient c and the values of h obtained by the interpolation function.