Due: Monday, October 17th, 2012
Problems to be turned in: 2, 4

1. Assume $a_{n}>0$ and that $\sum_{n=1}^{\infty} a_{n}<\infty$. Does it imply that $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}<\infty$?
2. Find the radius of convergence of the series $\sum_{n=1}^{\infty} n x^{n}$ and within the radius of convergence give an explicit expression for its sum.
3. Let a_{n} be a sequence of real numbers and $a_{n_{k}}$ be a subsequence of the same. Suppose $\sum_{k=1}^{\infty} a_{k}<\infty$ then does it imply $\sum_{k=1}^{\infty} a_{n_{k}}<\infty$?
4. Let $p \in \mathbb{R}$. Decide whether

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{(n+1)^{p}}
$$

converges or not.
5. Suppose two teams play a series of games, each producing a winner and a loser, until one team has won two more games than the other. Let G be the total number of games played. Assuming each team has chance 0.5 to win each game, independent of results of the previous games. Find the expected value of G.

