Due: Wednesday, October 10th, 2012

Problem to be turned in : 2,4

- 1. Let $C_1, C_2 \in \mathbb{R} \setminus \{0\}$ and $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}, \{z_n\}_{n=1}^{\infty}$ be sequences of real numbers. Suppose the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ both converge. Show that:
 - (a) If $z_n = C_1 x_n + C_2 y_n$ then $\sum_{n=1}^{\infty} z_n$ also converges.
 - (b) If $0 \le z_n \le C_1 x_n$ then $\sum_{n=1}^{\infty} z_n$ also converges.
- 2. Suppose $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ and $\{z_n\}_{n=1}^{\infty}$ are sequences of real numbers such that

$$x_n \le z_n \le y_n$$

for all $n \ge 1$, and the series $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} y_n$ both converge. Does it always imply that $\sum_{n=1}^{\infty} z_n$ converges ?

3. Let $a, b, c \in \mathbb{R}$. Suppose $\{x_n\}_{n=1}^{\infty}$ is a sequence of real numbers such that

$$x_n = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}.$$

Decide whether the series $\sum_{n=1}^{\infty} x_n$ converges or not.

4. Suppose $\{z_n\}_{n=1}^{\infty}$ is a sequence of real numbers. Decide whether the series converges or not in each of the following cases:

$$(i)z_n = \frac{\sqrt{n}}{2n^3 - 1}, (ii)z_n = \left(\frac{n}{2n + 1}\right)^n (iii)z_n = \frac{\sqrt{n^2 - n + 1}}{n^3 + 1}$$