Due: Wednesday, October 3rd, 2012

Problem to be turned in : 2,4

1. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. Let $S=\lim \sup _{n \rightarrow \infty} x_{n}$ and $I=\liminf _{n \rightarrow \infty} x_{n}$.
(a) Prove or disprove: $|S|=\lim \sup _{n \rightarrow \infty}\left|x_{n}\right|$ and $|I|=\liminf _{n \rightarrow \infty}\left|x_{n}\right|$.
(b) Suppose $S=I=x$ then show that $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
2. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers and let $\left\{z_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers such that $z_{n}=x_{n}+y_{n}$ for all $n \in \mathbb{N}$. Show that
(a) $\liminf _{n \rightarrow \infty} z_{n} \geq \liminf _{n \rightarrow \infty} x_{n}+\liminf _{n \rightarrow \infty} y_{n}$ provided the sum on the right hand side is not of the form $\infty-\infty$.
(b) $\lim \sup _{n \rightarrow \infty} z_{n} \leq \lim \sup _{n \rightarrow \infty} x_{n}+\lim \sup _{n \rightarrow \infty} y_{n}$ provided the sum on the right hand side is not of the form $\infty-\infty$.
3. Suppose $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers. Let $s_{n}=\sup \left\{x_{k}: k \geq n\right\}$ and $t_{n}=\inf \left\{x_{k}\right.$: $k \geq n\}$.
(a) Show that $s_{n} \rightarrow s$ for some $s \in \overline{\mathbb{R}}$ and further that s is a limit point of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$.
(b) Show that $t_{n} \rightarrow t$ for some $t \in \overline{\mathbb{R}}$ and $t=\liminf _{n \rightarrow \infty} x_{n}$.
4. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. Suppose the sequence is not bounded. Then show that there is either a subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ such that $x_{n_{k}} \rightarrow \infty$ or $x_{n_{k}} \rightarrow-\infty$.
5. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive real numbers. Then show that

$$
\liminf _{n \rightarrow \infty} \frac{z_{n+1}}{z_{n}} \leq \liminf _{n \rightarrow \infty} \sqrt[n]{z_{n}} \leq \limsup _{n \rightarrow \infty} \sqrt[n]{z_{n}} \leq \limsup _{n \rightarrow \infty} \frac{z_{n+1}}{z_{n}}
$$

