Due: Wednesday, October 3rd, 2012

Problem to be turned in : 2,4

- 1. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Let $S = \limsup_{n \to \infty} x_n$ and $I = \liminf_{n \to \infty} x_n$.
 - (a) Prove or disprove: $|S| = \limsup_{n \to \infty} |x_n|$ and $|I| = \liminf_{n \to \infty} |x_n|$.
 - (b) Suppose S = I = x then show that $x_n \to x$ as $n \to \infty$.
- 2. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences of real numbers and let $\{z_n\}_{n=1}^{\infty}$ be a sequence of real numbers such that $z_n = x_n + y_n$ for all $n \in \mathbb{N}$. Show that
 - (a) $\liminf_{n\to\infty} z_n \ge \liminf_{n\to\infty} x_n + \liminf_{n\to\infty} y_n$ provided the sum on the right hand side is not of the form $\infty - \infty$.
 - (b) $\limsup_{n\to\infty} z_n \leq \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$ provided the sum on the right hand side is not of the form $\infty - \infty$.
- 3. Suppose $\{x_n\}_{n=1}^{\infty}$ is a sequence of real numbers. Let $s_n = \sup\{x_k : k \ge n\}$ and $t_n = \inf\{x_k : k \ge n\}$.
 - (a) Show that $s_n \to s$ for some $s \in \mathbb{R}$ and further that s is a limit point of the sequence $\{x_n\}_{n=1}^{\infty}$.
 - (b) Show that $t_n \to t$ for some $t \in \mathbb{R}$ and $t = \liminf_{n \to \infty} x_n$.
- 4. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Suppose the sequence is not bounded. Then show that there is either a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ such that $x_{n_k} \to \infty$ or $x_{n_k} \to -\infty$.
- 5. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers. Then show that

$$\liminf_{n \to \infty} \frac{z_{n+1}}{z_n} \le \liminf_{n \to \infty} \sqrt[n]{z_n} \le \limsup_{n \to \infty} \sqrt[n]{z_n} \le \limsup_{n \to \infty} \frac{z_{n+1}}{z_n}.$$