Due: Wednesday, September 5th, 2012

Problems to be turned in: 2,5

1. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers \mathbb{R} and suppose that $x_{n} \rightarrow x$. Let $m, l \in \mathbb{N}, p: \mathbb{R} \rightarrow \mathbb{R}$ such that $p(x)=\sum_{k=0}^{l} p_{k} x^{k}$, and $q: \mathbb{R} \rightarrow \mathbb{R} \backslash\{0\}, q(x)=\sum_{k=0}^{m} q_{k} x^{k}$, with $p_{k} \in \mathbb{R}, q_{k} \in \mathbb{R}$ for $k=1,2, \ldots, n$. Show that if $r: \mathbb{R} \rightarrow \mathbb{R}$ defined by $r(x)=\frac{p(x)}{q(x)}$ then $r\left(x_{n}\right) \rightarrow r(x)$.
2. Let $\alpha \in \mathbb{R}, p>0$. Consider $\left\{x_{n}\right\}_{n=1}^{\infty}$, such that $x_{n}=\frac{n^{\alpha}}{(1+p)^{n}}$ for $n \in \mathbb{N}$. Decide if $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges or not.
3. Consider $\left\{x_{n}\right\}_{n=1}^{\infty}$, such that $x_{n}=\left(1+\frac{1}{n}\right)^{n}$, for all $n \in \mathbb{N}$. Show that x_{n} is a monotonically increasing sequence and it converges to $x \in \mathbb{R}$.
4. Let $a>0$ and choose $s_{1}>\sqrt{a}$. Define $s_{n+1}:=\frac{1}{2}\left(s_{n}+\frac{a}{s_{n}}\right)$ for $n \in \mathbb{N}$. Show that s_{n} is monotonically decreasing and ${ }^{1} \lim _{n \rightarrow} s_{n}=\sqrt{a}$.
5. Let $\left\{z_{n}\right\}_{n=1}^{\infty}$ be a sequence of non-zero real numbers such that $L:=\lim _{n \rightarrow \infty} \frac{\left|z_{n+1}\right|}{\left|z_{n}\right|}$ exists. If $L<1$, then $z_{n} \rightarrow 0$. What happens if $L>1$?
6. Let $0 \leq r<1$ and $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers such that $x_{n}=\sum_{k=1}^{n} r^{k}$ for all $n \in \mathbb{N}$. Show that x_{n} is a convergent sequence.
7. Suppose $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence of integers. Show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is Cauchy implies that it is eventually a constant sequence (i.e. $\exists c \in \mathbb{N}, m \in \mathbb{N}$ such that $x_{n}=c$ for all $m \geq n$.)
8. Decide which one of the following sequences are cauchy.
i) $\sum_{k=1}^{n} \frac{1}{k}$,
(ii) $\frac{(-1)^{n}}{n}$,
(iii) $\sum_{k=1}^{n} \frac{1}{k^{2}}$ and, (iv) $(-1)^{n}$
[^0]
[^0]: ${ }^{1}$ Extra credit: If $z_{n}=s_{n}-\sqrt{a}$ then show that $z_{n+1}<\frac{z_{n}^{2}}{2 \sqrt{a}}$. Justify the statement: "this is a good algorithm for calculating square roots".

