Due: Wednesday, August 29th, 2012
Problems to be turned in: 2,4,8

1. If $x>-1$ then $(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$.
2. Let $x \in \mathbb{R}, C>0$, and $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. Show that the following are equivalent:
(a) $\forall \epsilon>0$, there is an $N \equiv N_{\epsilon} \in \mathbb{N}$ such that $\left|x_{n}-x\right|<\epsilon$ for all $n \geq N$.
(b) $\forall \epsilon>0$, there is an $M \equiv M_{\epsilon} \in \mathbb{N}$ such that $\left|x_{n}-x\right| \leq C \epsilon$ for all $n>M$.
3. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers \mathbb{R} and suppose that $x_{n} \rightarrow x$.
(a) Let $m, n \in \mathbb{N}$ and $y_{n}=x_{m+n}$ for all $n \geq 1$. Show that $y_{n} \rightarrow x$ as $m \rightarrow \infty$.
(b) Show that $\left\{\left|x_{n}\right|\right\}_{n=1}^{\infty}$ also converges
4. Find: (i) $\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}$, (ii) $\lim _{n \rightarrow \infty} \sqrt{n^{2}-n}-n$ and, (iii) $\lim _{n \rightarrow \infty} n b^{n}$, where $b \in(0,1)$.
5. Consider the $\left\{y_{n}\right\}_{n=1}^{\infty}$, such that $y_{1}>1$ and $y_{n+1}:=2-\frac{1}{y_{n}}$ for $n \geq 2$. Show that y_{n} converges.
6. Suppose $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ are such that for every $\epsilon>0$ there is an M such that $\left|x_{n}-y_{n}\right|<\epsilon$ for all $n \geq M$. If $x_{n} \rightarrow x$ then does it imply that y_{n} converges.
7. Let A be a bounded non-empty subset of \mathbb{R}. Let $s=\sup (A)$ and $i=\inf (A)$. Show that there are sequences $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{z_{n}\right\}_{n=1}^{\infty}$ in A such that $x_{n} \rightarrow s$ and $z_{n} \rightarrow i$ as $n \rightarrow \infty$.
8. Give Examples of the following:
(a) a bounded sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$ that does not converge.
(b) sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ that do not converge but their sum converges
(c) sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ that do not converge but their product converges.
