Due: Wednesday, August 29th, 2012

Problems to be turned in: 2,4,8

- 1. If x > -1 then $(1+x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.
- 2. Let $x \in \mathbb{R}$, C > 0, and $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Show that the following are equivalent:
 - (a) $\forall \epsilon > 0$, there is an $N \equiv N_{\epsilon} \in \mathbb{N}$ such that $|x_n x| < \epsilon$ for all $n \ge N$.
 - (b) $\forall \epsilon > 0$, there is an $M \equiv M_{\epsilon} \in \mathbb{N}$ such that $|x_n x| \leq C\epsilon$ for all n > M.
- 3. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers \mathbb{R} and suppose that $x_n \to x$.
 - (a) Let $m, n \in \mathbb{N}$ and $y_n = x_{m+n}$ for all $n \ge 1$. Show that $y_n \to x$ as $m \to \infty$.
 - (b) Show that $\{|x_n|\}_{n=1}^{\infty}$ also converges
- 4. Find: (i) $\lim_{n\to\infty} \frac{2^n}{n!}$, (ii) $\lim_{n\to\infty} \sqrt{n^2 n} n$ and, (iii) $\lim_{n\to\infty} nb^n$, where $b \in (0, 1)$.
- 5. Consider the $\{y_n\}_{n=1}^{\infty}$, such that $y_1 > 1$ and $y_{n+1} := 2 \frac{1}{y_n}$ for $n \ge 2$. Show that y_n converges.
- 6. Suppose $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are such that for every $\epsilon > 0$ there is an M such that $|x_n y_n| < \epsilon$ for all $n \ge M$. If $x_n \to x$ then does it imply that y_n converges.
- 7. Let A be a bounded non-empty subset of \mathbb{R} . Let $s = \sup(A)$ and $i = \inf(A)$. Show that there are sequences $\{x_n\}_{n=1}^{\infty}$, $\{z_n\}_{n=1}^{\infty}$ in A such that $x_n \to s$ and $z_n \to i$ as $n \to \infty$.
- 8. Give Examples of the following:
 - (a) a bounded sequence $\{z_n\}_{n=1}^{\infty}$ that does not converge.
 - (b) sequences $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ that do not converge but their sum converges
 - (c) sequences $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ that do not converge but their product converges.