Problem to be turned in : 5,\%.

In this assignment: \mathbb{N} will denote natural numbers, \mathbb{Q} will denote rational numbers, \mathbb{R} will denote real numbers and \mathbb{C} will denote complex numbers.

1. Show that if $0<a<b$ and $a, b \in \mathbb{R}$ then

$$
b^{n}-a^{n}<(b-a) n b^{n-1} .
$$

2. Let $n \in \mathbb{N}$. Prove that $n^{3}+2 n$ is always a multiple of 3 .
3. For $x>0, n \in \mathbb{N}$, let $A=\left\{t \in \mathbb{R}: t>0, t^{n}<x\right\}$. Let $y=\sup (A)$. Show that $y^{n}>x$ is not possible.
4. (Rudin: page 21) Let r and x be real numbers. If r is rational ($r=0$)and x is irrational, prove that $r+x$ and $r x$ are irrational.
5. (Rudin: page 22) Let A be a non-empty set of real numbers which is bounded below. Let

$$
-A:=\{x \in \mathbb{R}:-x \in A\} .
$$

Show that $\inf (A)=-\sup (-A)$.
6. (From Rudin: page 22) Show that the set of all complex numbers \mathbb{C} defined in class is a Field. Decide whether this field can be: (a) ordered set and/or (b) ordered field.
7. (Rudin: page 22) If $z, w, z_{i} \in \mathbb{C}$ for $i=1,2, \ldots, n$ then show that

$$
\left|\sum_{k=1}^{n} z_{k}\right| \leq \sum_{k=1}^{n}\left|z_{k}\right| .
$$

and

$$
\| z|-|w|| \leq|z-w| .
$$

8. (From Rudin: page 22) Decide when does the equality hold in Cauchy-Schwarz-Bunyakovski inequality?
