Due: Wednesday, August 8, 2012 Problem to be turned in : 5,7.

In this assignment: \mathbb{N} will denote natural numbers, \mathbb{Q} will denote rational numbers, \mathbb{R} will denote real numbers and \mathbb{C} will denote complex numbers.

1. Show that if 0 < a < b and $a, b \in \mathbb{R}$ then

$$b^n - a^n < (b - a)nb^{n-1}.$$

- 2. Let $n \in \mathbb{N}$. Prove that $n^3 + 2n$ is always a multiple of 3.
- 3. For $x > 0, n \in \mathbb{N}$, let $A = \{t \in \mathbb{R} : t > 0, t^n < x\}$. Let $y = \sup(A)$. Show that $y^n > x$ is not possible.
- 4. (Rudin: page 21) Let r and x be real numbers. If r is rational (r = 0) and x is irrational, prove that r + x and rx are irrational.
- 5. (Rudin: page 22) Let A be a non-empty set of real numbers which is bounded below. Let

$$-A := \{ x \in \mathbb{R} : -x \in A \}.$$

Show that $\inf(A) = -\sup(-A)$.

- 6. (From Rudin: page 22) Show that the set of all complex numbers C defined in class is a Field. Decide whether this field can be: (a) ordered set and/or (b) ordered field.
- 7. (Rudin: page 22) If $z, w, z_i \in \mathbb{C}$ for i = 1, 2, ..., n then show that

$$|\sum_{k=1}^n z_k| \leq \sum_{k=1}^n |z_k|.$$

and

$$||z| - |w|| \le |z - w|.$$

8. (From Rudin: page 22) Decide when does the equality hold in Cauchy-Schwarz-Bunyakovski inequality ?