## Due: Wednesday, November 14th, 2012 <br> Problems to be turned in: 1,2

1. Let $-\infty \leq a<b \leq \infty$ and $f:(a, b) \rightarrow \mathbb{R}$ be a differentiable function.
(a) If $c \in(a, b)$ is a local maximum of $f$ (i.e. there is a $\delta>0$ such that $f(x) \leq f(c)$ whenever $|x-c|<\delta$ and $x \in(a, b)$.) then $f^{\prime}(c)=0$.
(b) $f$ is increasing on $(a, b)$ if and only if $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$.
(c) Suppose $f^{\prime}(c)=0$ for all $c \in(a, b)$. From first principles, show that f is a constant function.
(d) Can you construct a $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(0)=0$ but $f$ is not monotonic in any neighbourhood of 0 ?
2. Let $f, g$ be continuous on $[a, b]$ and differentiable on $(a, b)$. Suppose that for some $c \in(a, b)$, $f(c)=g(c)$ and $f^{\prime}(c)<g^{\prime}(c)$. Prove that there exists $\delta>0$ such that $f(x)<g(x)$ for all $x \in(c, c+\delta)$, and $f(x)>g(x)$ for all $x \in(c-\delta, c)$.
3. Let $g:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on $(a, b)$. Suppose that $g(a)<g(b)$ and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Prove that $g$ is strictly increasing on $[a, b]$.
4. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is differentiable at some $c \in(a, b)$ with $f^{\prime}(c)>0$. Does this imply that $f$ is strictly increasing, or increasing, on an interval $(c-\delta, c+\delta)$ for some $\delta>0$ ? If true, then prove it, otherwise construct a counter-example.
5. Use the Mean Value Theorem to prove that $|\cos x-\cos y| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
6. If $h(x)=-1$ for $x<0$ and $h(x)=1$ for $x \geq 0$, prove that there exists no $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=h(x)$ for all $x \in \mathbb{R}$. (Hint: We have used the MVT to prove that the anti-derivative is unique up to a constant shift. Namely, if $g^{\prime}(x)=f^{\prime}(x)$ on an open interval $(a, b)$, then $g(x)=f(x)+C$ for some constant $C$.)
7. Suppose that $f:[0,2] \rightarrow \mathbb{R}$ is continuous on $[0,2]$ and differentiable on $(0,2)$. If $f(0)=1$ and $f(1)=f(2)=0$, then show that
(i) There exists $c_{1} \in(0,1)$ such that $f^{\prime}\left(c_{1}\right)=-1$.
(ii) There exists $c_{2} \in(1,2)$ such that $f^{\prime}\left(c_{2}\right)=0$.
(iii) There exists $c_{3} \in(0,2)$ such that $f^{\prime}\left(c_{3}\right)=-0.3$.
8. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on $(a, b)$. Show by an example that even if $\lim _{x \rightarrow a^{+}} f^{\prime}(x)$ exists, $f$ may not be differentiable at $a$. However, if $f$ is furthermore assumed to be continuous at $a$, then $\lim _{x \rightarrow a} f^{\prime}(x)=A$ implies $f^{\prime}(a)$ exists and equals $A$.
