Due: Wednesday, November 14th, 2012

Problems to be turned in: 1,2

- 1. Let $-\infty \leq a < b \leq \infty$ and $f: (a, b) \to \mathbb{R}$ be a differentiable function.
 - (a) If $c \in (a, b)$ is a local maximum of f (i.e. there is a $\delta > 0$ such that $f(x) \leq f(c)$ whenever $|x c| < \delta$ and $x \in (a, b)$.) then f'(c) = 0.
 - (b) f is increasing on (a, b) if and only if $f'(x) \ge 0$ for all $x \in (a, b)$.
 - (c) Suppose f'(c) = 0 for all $c \in (a, b)$. From first principles, show that f is a constant function.
 - (d) Can you construct a $f : \mathbb{R} \to \mathbb{R}$ such that f'(0) = 0 but f is not monotonic in any neighbourhood of 0?
- 2. Let f, g be continuous on [a, b] and differentiable on (a, b). Suppose that for some $c \in (a, b)$, f(c) = g(c) and f'(c) < g'(c). Prove that there exists $\delta > 0$ such that f(x) < g(x) for all $x \in (c, c + \delta)$, and f(x) > g(x) for all $x \in (c \delta, c)$.
- 3. Let $g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Suppose that g(a) < g(b) and $g'(x) \neq 0$ for all $x \in (a, b)$. Prove that g is strictly increasing on [a, b].
- 4. Suppose that $f : [a, b] \to \mathbb{R}$ is differentiable at some $c \in (a, b)$ with f'(c) > 0. Does this imply that f is strictly increasing, or increasing, on an interval $(c \delta, c + \delta)$ for some $\delta > 0$? If true, then prove it, otherwise construct a counter-example.
- 5. Use the Mean Value Theorem to prove that $|\cos x \cos y| \le |x y|$ for all $x, y \in \mathbb{R}$.
- 6. If h(x) = -1 for x < 0 and h(x) = 1 for $x \ge 0$, prove that there exists no $f : \mathbb{R} \to \mathbb{R}$ such that f'(x) = h(x) for all $x \in \mathbb{R}$. (Hint: We have used the MVT to prove that the anti-derivative is unique up to a constant shift. Namely, if g'(x) = f'(x) on an open interval (a, b), then g(x) = f(x) + C for some constant C.)
- 7. Suppose that $f: [0,2] \to \mathbb{R}$ is continuous on [0,2] and differentiable on (0,2). If f(0) = 1 and f(1) = f(2) = 0, then show that
 - (i) There exists $c_1 \in (0, 1)$ such that $f'(c_1) = -1$.
 - (ii) There exists $c_2 \in (1, 2)$ such that $f'(c_2) = 0$.
 - (iii) There exists $c_3 \in (0,2)$ such that $f'(c_3) = -0.3$.
- 8. Let $f : [a, b] \to \mathbb{R}$ be differentiable on (a, b). Show by an example that even if $\lim_{x \to a^+} f'(x)$ exists, f may not be differentiable at a. However, if f is furthermore assumed to be continuous at a, then $\lim_{x \to a} f'(x) = A$ implies f'(a) exists and equals A.