Due: Wed november 7th, 2012

Problems to be turned in: 1,2

1. Let A be a countable subset of \mathbb{R}. Consider $p: A \rightarrow[0,1]$ such that $\sum_{n=1}^{\infty} p\left(x_{n}\right)=1$ where $\left\{x_{k}: k \in \mathbb{N}\right\}$ is an enumeration of A. Define $F: \mathbb{R} \rightarrow[0,1]$ by $F(x)=\sum_{x_{n} \leq x} p\left(x_{n}\right) \equiv \sum_{n=1}^{\infty} g^{x}\left(x_{n}\right) p\left(x_{n}\right)$.
(a) Show that F is monotonically increasing.
(b) Identify the discontinuity points of F and show that $F(x+)=F(x)$ for all $x \in \mathbb{R}$ (where $F(x+)$ is the notation for RHL at $x)$.
(c) Show that $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$.
(d) By choosing a suitable A and p construct an example of a monotonically increasing function whose points of discontinuity are not isolated.
2. Find the continuity points of $f: \mathbb{R} \rightarrow \mathbb{R}$, when f is given by: (a) $f(x)=\lfloor x\rfloor$ (i.e. greatest integer less than or equal to x), (b) $f(x)=x\lfloor x\rfloor$, and (c) $f(x)=x-\lfloor x\rfloor$.
3. Show that $g(x)=\sqrt{x}$ is a uniformly continuous function on $[0,1]$ but is not a Lipschitz function.
4. Let $a, b \in \mathbb{R}$ and $I=(a, b)$. Let $f: I \rightarrow \mathbb{R}$ be a continuous monotonically (strictly) increasing function. Show that $f(I)$ is also an open interval. Is this interval always bounded ?
5. Rudin Exercise 6, chapter 1.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Show that f is continuous at 0 and LHD (left hand derivative) and RHD(Right hand derivative) of f does not exist at 0 .
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and suppose that

$$
|f(x)-f(y)| \leq(x-y)^{2}
$$

Show that f is a constant function.
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Show that $\lim _{x \rightarrow 0} f(x)$ exists if and only if $\lim _{x \downarrow 0} f(x):=f(0+)=f(0-):=$ $\lim _{x \uparrow 0} f(x)$.

