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6. (Logarithm function:- ln(x)) Let E be the function as defined in q5. Let L :

(0,∞) → R such that

L(E(y)) = y, ∀ y ∈ R

(a) Show that L is well-defined and L(uv) = L(u) + L(v), for all u, v ∈ (0,∞). (L(x) is

denoted by ln(x) for all x > 0)

(b) Show that L is a continuous monotonically increasing (strictly) function.

(c) Show that for any α ∈ R, x ∈ [0,∞), xα = E(α(ln(x))) = eα ln(x).

Solution by Prateek Karandikar:

(a) Let x ∈ Range(E). Then there exists y ∈ R such that E(y) = x. As E is strictly

increasing, if y1 6= y then E(y1) 6= E(y). Now it remains to be shown that Range(E) =

(0,∞). E(x) > 0 for all x ∈ R. Therefore Range(E) ⊆ (0,∞). Let a ∈ (0,∞). If a = 1,

then E(0) = a. If a > 1, then E(a) =
∑∞

k=0
ak

k!
> 1 + a. E(0) = 1 and E(a) > 1 + a. By

the intermediate value theorem there exists b ∈ (0, a) such that E(b) = a. If a < 1, then

by the above there exists c ∈ (0, 1
a
) such that E(c) = 1

a
which implies E(−c) = a. Thus

(0,∞) ⊆ Range(E) and hence Range(E) = (0,∞). So for all x ∈ (0,∞) there exists a

unique y ∈ R such that x = E(y). Hence L, defined as L(E(y)) = y, is well-defined.

We will now show that for all u, v ∈ (0,∞), L(uv) = L(u) + L(v). Let s = L(u)

and t = L(v). Then, u = E(s) and v = E(t). uv = E(s)E(t) = E(s + t). Hence

L(uv) = s + t = L(u) + L(v).

(b) Let x, y ∈ (0,∞) such that x < y. Let u = L(x) and v = L(y). Then, x = E(u) and

y = E(v). As E is strictly increasing, if u ≥ v then x = E(u) ≥ E(y) = y, which is not

true as x < y. Therefore u < v, and hence L is strictly increasing.

We will now show that L is continuous. Let a ∈ (0,∞). Let ǫ > 0 be given. Let

b = L(a). Let δ = min
{

E(b + ǫ) − E(b), E(b) − E(b − ǫ)
}

. As E is strictly increasing,

δ > 0. If c ∈ (0,∞) such that |c − a| < δ, then c ∈
(

E(b − ǫ), E(b + ǫ)
)

. As L is strictly

increasing, L(c) ∈ (b − ǫ, b + ǫ), i.e. |L(c) − L(a)| < ǫ. Hence L is continuous.

(c) If x ∈ (0,∞) and L(x) = s, then x = E(s) and hence E(L(x)) = E(s) = x.

eα ln(x) =
(

eln(x)
)α

=
(

E(L(x))
)α

= xα

7. Find the continuity points of f : R → R, when f is given by

(a) f(x) = ⌊x⌋ (i.e. greatest integer less than or equal to x)

(b) f(x) = x⌊x⌋

(c) f(x) = x − ⌊x⌋
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Solution by Prateek Karandikar:

(a) Let x ∈ R. Consider the case when x /∈ Z. Let n = ⌊x⌋. Then n < x < n + 1. Let

ǫ > 0 be given. Let δ = min{x− n, n + 1 − x}. δ > 0. If |y − x| < δ, then y ∈ (n, n + 1).

Hence |f(x) − f(y)| = |n − n| = 0 < ǫ. Therefore f is continuous at all x ∈ R − Z. Now

consider the case when x ∈ Z. Then f(x) = x. Let ǫ = 1
2
. Let δ > 0 be given. Choose

y = x − min{ δ
2
, 1

2
}. Then f(y) = x − 1. |y − x| < δ and |f(y) − f(x)| = 1 > ǫ. Hence f

is discontinuous at all x ∈ Z.

(b) Let x ∈ R. Consider the case when x 6= 0. Then f(x) = x⌊x⌋ and ⌊x⌋ = f(x) 1
x
. The

functions g : R−{0} → R, g(x) = x and h : R−{0} → R, h(x) = 1
x

are both continuous

at all x ∈ R − {0}. If two functions from A ⊆ R to R are continuous at a point, their

product is also continuous at that point. Therefore, for x ∈ R − {0}, f(x) is continuous

at x if and only if ⌊x⌋ is continuous at x. Now consider the case when x = 0. Let ǫ > 0

be given. Choose δ = min{1
2
, ǫ}. Let y ∈ R such that |y − x| = |y| < δ. For y ∈ [0, δ),

f(y) = 0. For y ∈ (−δ, 0), f(y) = (−1)y. Therefore |f(y) − f(x)| = |f(y)| < ǫ. Hence f

is continuous at 0.

For any x ∈ R, f is continuous at x iff x ∈
(

(R − Z) ∪ {0}
)

.

(c) The sum and difference of two continuous functions from R → R is also continuous.

f(x) = x − ⌊x⌋ and ⌊x⌋ = x − f(x). Hence f(x) is continous at x if and only if ⌊x⌋ is

continuous at x, i.e. if and only if x ∈ R − Z.

5. Let A be a countable subset of R. Consider p : A → [0, 1] such that
∑∞

n=1 p(xn) = 1

where {xn}
∞

n=1 is an enumeration of A. Define F : R → [0, 1] by

F (x) =
∑

xn≤x

p(xn) ≡

∞
∑

n=1

gx(xn)p(xn)

(a) Show that F is monotonically increasing.

(b) Identify the discontinuity points of F and show that F (x+) = F (x) for all x ∈ R.

(c) Show that limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.

(d) By choosing a suitable A and p construct an example of a monotonically increasing

function whose points of discontinuity are not isolated.

Solution by Prateek Karandikar:

For any B ⊆ A,
∑

x∈B p(x) is well-defined as it is equal to
∑∞

n=1 1B(xn)p(xn) which

by the comparison test converges absolutely.

(a) Let p, q ∈ R such that p < q. For all x ∈ R, gp(x) ≤ gq(x). Therefore

F (p) =

∞
∑

n=1

gp(xn)p(xn) ≤

∞
∑

n=1

gq(xn)p(xn) = F (q)

Hence F is monotonically increasing.

(b) We will consider the right hand and left hand limits for all x ∈ R. Let x ∈ R be

given. Let ǫ > 0 be given. There exists N0 > 1 ∈ N such that
∑N0

n=1 p(xn) > 1 − ǫ, i.e.
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∑∞

n=N0+1 p(xn) < ǫ. Let δ = min
[

{|x−xi| : 1 ≤ i ≤ N0}−{0}
]

. δ > 0. Let y ∈ (x, x+ δ).

Then, xj ∈ (x, y] =⇒ j > N0.

|F (y) − F (x)| =
∑

z∈(x,y]∩A

p(z)(why?)

≤

∞
∑

n=N0+1

p(xn)

< ǫ

For all x ∈ R, for all ǫ > 0, there exists a δ > 0 such that y ∈ (x, x + δ) =⇒ |F (y) −

F (x)| < ǫ. Therefore F (x+) = F (x) for all x ∈ R. Now let y′ ∈ (x − δ, x). xj ∈

(y′, x) =⇒ j > N0. Define G(x) =
∑

xn<x p(xn).

|F (y′) − G(x)| =
∑

z∈(y′,x)∩A

p(z)

≤
∞

∑

n=N0+1

p(xn)

< ǫ

For all x ∈ R, for all ǫ > 0, there exists a δ > 0 such that y′ ∈ (x − δ, x) =⇒

|F (y′) − G(x)| < ǫ. Therefore F (x−) = G(x) for all x ∈ R.

F (x+) = F (x) for all x ∈ R. Therefore,

F is not continuous at x ⇐⇒ F (x−) 6= F (x)

⇐⇒ G(x) 6= F (x)

⇐⇒
∑

xn<x

p(xn) 6=
∑

xn≤x

p(xn)

⇐⇒ x ∈ Aandp(x) 6= 0

(c) Let ǫ > 0 be given. There exists N0 ∈ N such that
∑N0

n=1 p(xn) > 1 − ǫ, i.e.
∑∞

n=N0+1 p(xn) < ǫ. Let M = max{xi : 1 ≤ i ≤ N0}. For x > M ,

F (x) =
∑

xn≤x

p(xn) ≥
N0
∑

n=1

p(xn) > 1 − ǫ

Let m = min{xi : 1 ≤ i ≤ N0}. For x < m,

F (x) =
∑

xn≤x

p(xn) ≤
∞

∑

n=N0+1

p(xn) < ǫ

As
∑∞

n=1 p(xn) = 1, 0 ≤ F (x) ≤ 1 for all x ∈ R. limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.

(d) Let A = Q. A is countable. Let {xn}
∞

n=1 be any enumeration of A. Let p(xn) = 1
e(n−1)!

.

p(xn) > 0 for all n ∈ N.
∞

∑

n=1

p(xn) =
1

e

∞
∑

n=1

1

(n − 1)!
= 1
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Hence p(xn) ≤ 1 for all n ∈ N. The set of discontinuites of the F corresponding to this

choice of A and p is {x ∈ A : p(x) 6= 0} = Q. Let q ∈ Q. Let ǫ > 0 be given. Choose

N ∈ N such that N > 1
ǫ
. 1

N
∈ Q, therefore q + 1

N
∈ Q. Also, 1

N
< ǫ. Hence q is a limit

point of Q. As every point of Q is a limit point of Q, it contains no isolated points.

6. Let f : R → R be a continuous function.

(a) Suppose c ∈ R and f(c) > 0. Show that there is a δ > 0 such that f(x) > 0 for all

x ∈ (c − δ, c + δ).

(b) Consider Z = {x ∈ R : f(x) = 0}. Show that Z contains all its limit points.

Solution by Prateek Karandikar:

(a) Let ǫ = f(c)
2

. By continuity of f , there exists a δ > 0 such that for all x ∈ (c−δ, c+δ),

f(x) ∈ (f(c) − ǫ, f(c) + ǫ). Therefore for all x ∈ (c − δ, c + δ), f(x) ∈
(

f(c)
2

, 3f(c)
2

)

, and so

f(x) > 0.

(b) Let a be any limit point of Z. Choose a sequence an such that for all n ∈ N, an ∈ Z

and |an −a| < 1
2n . Such a sequence exists as a is a limit point of Z. Then limn→∞ an = a.

By continuity of f , limn→∞ f(an) = f(a). For all n ∈ N, f(an) = 0. Hence f(a) = 0 and

a ∈ Z.
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