6. (Logarithm function:- $\ln (x)$) Let E be the function as defined in q5. Let L : $(0, \infty) \rightarrow \mathbb{R}$ such that

$$
L(E(y))=y, \forall y \in \mathbb{R}
$$

(a) Show that L is well-defined and $L(u v)=L(u)+L(v)$, for all $u, v \in(0, \infty) \cdot(L(x)$ is denoted by $\ln (x)$ for all $x>0$)
(b) Show that L is a continuous monotonically increasing (strictly) function.
(c) Show that for any $\alpha \in \mathbb{R}, x \in[0, \infty), x^{\alpha}=E(\alpha(\ln (x)))=e^{\alpha \ln (x)}$.

Solution by Prateek Karandikar:

(a) Let $x \in \operatorname{Range}(E)$. Then there exists $y \in \mathbb{R}$ such that $E(y)=x$. As E is strictly increasing, if $y_{1} \neq y$ then $E\left(y_{1}\right) \neq E(y)$. Now it remains to be shown that Range $(E)=$ $(0, \infty) . E(x)>0$ for all $x \in \mathbb{R}$. Therefore Range $(E) \subseteq(0, \infty)$. Let $a \in(0, \infty)$. If $a=1$, then $E(0)=a$. If $a>1$, then $E(a)=\sum_{k=0}^{\infty} \frac{a^{k}}{k!}>1+a$. $E(0)=1$ and $E(a)>1+a$. By the intermediate value theorem there exists $b \in(0, a)$ such that $E(b)=a$. If $a<1$, then by the above there exists $c \in\left(0, \frac{1}{a}\right)$ such that $E(c)=\frac{1}{a}$ which implies $E(-c)=a$. Thus $(0, \infty) \subseteq$ Range (E) and hence Range $(E)=(0, \infty)$. So for all $x \in(0, \infty)$ there exists a unique $y \in \mathbb{R}$ such that $x=E(y)$. Hence L, defined as $L(E(y))=y$, is well-defined.

We will now show that for all $u, v \in(0, \infty), L(u v)=L(u)+L(v)$. Let $s=L(u)$ and $t=L(v)$. Then, $u=E(s)$ and $v=E(t)$. uv $=E(s) E(t)=E(s+t)$. Hence $L(u v)=s+t=L(u)+L(v)$.
(b) Let $x, y \in(0, \infty)$ such that $x<y$. Let $u=L(x)$ and $v=L(y)$. Then, $x=E(u)$ and $y=E(v)$. As E is strictly increasing, if $u \geq v$ then $x=E(u) \geq E(y)=y$, which is not true as $x<y$. Therefore $u<v$, and hence L is strictly increasing.

We will now show that L is continuous. Let $a \in(0, \infty)$. Let $\epsilon>0$ be given. Let $b=L(a)$. Let $\delta=\min \{E(b+\epsilon)-E(b), E(b)-E(b-\epsilon)\}$. As E is strictly increasing, $\delta>0$. If $c \in(0, \infty)$ such that $|c-a|<\delta$, then $c \in(E(b-\epsilon), E(b+\epsilon))$. As L is strictly increasing, $L(c) \in(b-\epsilon, b+\epsilon)$, i.e. $|L(c)-L(a)|<\epsilon$. Hence L is continuous.
(c) If $x \in(0, \infty)$ and $L(x)=s$, then $x=E(s)$ and hence $E(L(x))=E(s)=x$.

$$
e^{\alpha \ln (x)}=\left(e^{\ln (x)}\right)^{\alpha}=(E(L(x)))^{\alpha}=x^{\alpha}
$$

7. Find the continuity points of $f: \mathbb{R} \rightarrow \mathbb{R}$, when f is given by
(a) $f(x)=\lfloor x\rfloor$ (i.e. greatest integer less than or equal to x)
(b) $f(x)=x\lfloor x\rfloor$
(c) $f(x)=x-\lfloor x\rfloor$

Solution by Prateek Karandikar:
(a) Let $x \in \mathbb{R}$. Consider the case when $x \notin \mathbb{Z}$. Let $n=\lfloor x\rfloor$. Then $n<x<n+1$. Let $\epsilon>0$ be given. Let $\delta=\min \{x-n, n+1-x\}$. $\delta>0$. If $|y-x|<\delta$, then $y \in(n, n+1)$. Hence $|f(x)-f(y)|=|n-n|=0<\epsilon$. Therefore f is continuous at all $x \in \mathbb{R}-\mathbb{Z}$. Now consider the case when $x \in \mathbb{Z}$. Then $f(x)=x$. Let $\epsilon=\frac{1}{2}$. Let $\delta>0$ be given. Choose $y=x-\min \left\{\frac{\delta}{2}, \frac{1}{2}\right\}$. Then $f(y)=x-1 .|y-x|<\delta$ and $|f(y)-f(x)|=1>\epsilon$. Hence f is discontinuous at all $x \in \mathbb{Z}$.
(b) Let $x \in \mathbb{R}$. Consider the case when $x \neq 0$. Then $f(x)=x\lfloor x\rfloor$ and $\lfloor x\rfloor=f(x) \frac{1}{x}$. The functions $g: \mathbb{R}-\{0\} \rightarrow \mathbb{R}, g(x)=x$ and $h: \mathbb{R}-\{0\} \rightarrow \mathbb{R}, h(x)=\frac{1}{x}$ are both continuous at all $x \in \mathbb{R}-\{0\}$. If two functions from $A \subseteq \mathbb{R}$ to \mathbb{R} are continuous at a point, their product is also continuous at that point. Therefore, for $x \in \mathbb{R}-\{0\}, f(x)$ is continuous at x if and only if $\lfloor x\rfloor$ is continuous at x. Now consider the case when $x=0$. Let $\epsilon>0$ be given. Choose $\delta=\min \left\{\frac{1}{2}, \epsilon\right\}$. Let $y \in \mathbb{R}$ such that $|y-x|=|y|<\delta$. For $y \in[0, \delta)$, $f(y)=0$. For $y \in(-\delta, 0), f(y)=(-1) y$. Therefore $|f(y)-f(x)|=|f(y)|<\epsilon$. Hence f is continuous at 0 .
For any $x \in \mathbb{R}, f$ is continuous at x iff $x \in((\mathbb{R}-\mathbb{Z}) \cup\{0\})$.
(c) The sum and difference of two continuous functions from $\mathbb{R} \rightarrow \mathbb{R}$ is also continuous. $f(x)=x-\lfloor x\rfloor$ and $\lfloor x\rfloor=x-f(x)$. Hence $f(x)$ is continous at x if and only if $\lfloor x\rfloor$ is continuous at x, i.e. if and only if $x \in \mathbb{R}-\mathbb{Z}$.
5. Let A be a countable subset of \mathbb{R}. Consider $p: A \rightarrow[0,1]$ such that $\sum_{n=1}^{\infty} p\left(x_{n}\right)=1$ where $\left\{x_{n}\right\}_{n=1}^{\infty}$ is an enumeration of A. Define $F: \mathbb{R} \rightarrow[0,1]$ by

$$
F(x)=\sum_{x_{n} \leq x} p\left(x_{n}\right) \equiv \sum_{n=1}^{\infty} g^{x}\left(x_{n}\right) p\left(x_{n}\right)
$$

(a) Show that F is monotonically increasing.
(b) Identify the discontinuity points of F and show that $F(x+)=F(x)$ for all $x \in \mathbb{R}$.
(c) Show that $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$.
(d) By choosing a suitable A and p construct an example of a monotonically increasing function whose points of discontinuity are not isolated.

Solution by Prateek Karandikar:

For any $B \subseteq A, \sum_{x \in B} p(x)$ is well-defined as it is equal to $\sum_{n=1}^{\infty} 1_{B}\left(x_{n}\right) p\left(x_{n}\right)$ which by the comparison test converges absolutely.
(a) Let $p, q \in \mathbb{R}$ such that $p<q$. For all $x \in \mathbb{R}, g^{p}(x) \leq g^{q}(x)$. Therefore

$$
F(p)=\sum_{n=1}^{\infty} g^{p}\left(x_{n}\right) p\left(x_{n}\right) \leq \sum_{n=1}^{\infty} g^{q}\left(x_{n}\right) p\left(x_{n}\right)=F(q)
$$

Hence F is monotonically increasing.
(b) We will consider the right hand and left hand limits for all $x \in \mathbb{R}$. Let $x \in \mathbb{R}$ be given. Let $\epsilon>0$ be given. There exists $N_{0}>1 \in \mathbb{N}$ such that $\sum_{n=1}^{N_{0}} p\left(x_{n}\right)>1-\epsilon$, i.e.
$\sum_{n=N_{0}+1}^{\infty} p\left(x_{n}\right)<\epsilon$. Let $\delta=\min \left[\left\{\left|x-x_{i}\right|: 1 \leq i \leq N_{0}\right\}-\{0\}\right] . \delta>0$. Let $y \in(x, x+\delta)$.
Then, $x_{j} \in(x, y] \Longrightarrow j>N_{0}$.

$$
\begin{aligned}
|F(y)-F(x)| & =\sum_{z \in(x, y] \cap A} p(z)(\text { why? }) \\
& \leq \sum_{n=N_{0}+1}^{\infty} p\left(x_{n}\right) \\
& <\epsilon
\end{aligned}
$$

For all $x \in \mathbb{R}$, for all $\epsilon>0$, there exists a $\delta>0$ such that $y \in(x, x+\delta) \Longrightarrow \mid F(y)-$ $F(x) \mid<\epsilon$. Therefore $F(x+)=F(x)$ for all $x \in \mathbb{R}$. Now let $y^{\prime} \in(x-\delta, x)$. $x_{j} \in$ $\left(y^{\prime}, x\right) \Longrightarrow j>N_{0}$. Define $G(x)=\sum_{x_{n}<x} p\left(x_{n}\right)$.

$$
\begin{aligned}
\left|F\left(y^{\prime}\right)-G(x)\right| & =\sum_{z \in\left(y^{\prime}, x\right) \cap A} p(z) \\
& \leq \sum_{n=N_{0}+1}^{\infty} p\left(x_{n}\right) \\
& <\epsilon
\end{aligned}
$$

For all $x \in \mathbb{R}$, for all $\epsilon>0$, there exists a $\delta>0$ such that $y^{\prime} \in(x-\delta, x) \Longrightarrow$ $\left|F\left(y^{\prime}\right)-G(x)\right|<\epsilon$. Therefore $F(x-)=G(x)$ for all $x \in \mathbb{R}$.
$F(x+)=F(x)$ for all $x \in \mathbb{R}$. Therefore,

$$
\begin{aligned}
F \text { is not continuous at } x & \Longleftrightarrow F(x-) \neq F(x) \\
& \Longleftrightarrow G(x) \neq F(x) \\
& \Longleftrightarrow \sum_{x_{n}<x} p\left(x_{n}\right) \neq \sum_{x_{n} \leq x} p\left(x_{n}\right) \\
& \Longleftrightarrow x \in A \operatorname{and} p(x) \neq 0
\end{aligned}
$$

(c) Let $\epsilon>0$ be given. There exists $N_{0} \in \mathbb{N}$ such that $\sum_{n=1}^{N_{0}} p\left(x_{n}\right)>1-\epsilon$, i.e. $\sum_{n=N_{0}+1}^{\infty} p\left(x_{n}\right)<\epsilon$. Let $M=\max \left\{x_{i}: 1 \leq i \leq N_{0}\right\}$. For $x>M$,

$$
F(x)=\sum_{x_{n} \leq x} p\left(x_{n}\right) \geq \sum_{n=1}^{N_{0}} p\left(x_{n}\right)>1-\epsilon
$$

Let $m=\min \left\{x_{i}: 1 \leq i \leq N_{0}\right\}$. For $x<m$,

$$
F(x)=\sum_{x_{n} \leq x} p\left(x_{n}\right) \leq \sum_{n=N_{0}+1}^{\infty} p\left(x_{n}\right)<\epsilon
$$

As $\sum_{n=1}^{\infty} p\left(x_{n}\right)=1,0 \leq F(x) \leq 1$ for all $x \in \mathbb{R} . \lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$. (d) Let $A=\mathbb{Q}$. A is countable. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be any enumeration of A. Let $p\left(x_{n}\right)=\frac{1}{e(n-1)!}$. $p\left(x_{n}\right)>0$ for all $n \in \mathbb{N}$.

$$
\sum_{n=1}^{\infty} p\left(x_{n}\right)=\frac{1}{e} \sum_{n=1}^{\infty} \frac{1}{(n-1)!}=1
$$

Hence $p\left(x_{n}\right) \leq 1$ for all $n \in \mathbb{N}$. The set of discontinuites of the F corresponding to this choice of A and p is $\{x \in A: p(x) \neq 0\}=\mathbb{Q}$. Let $q \in \mathbb{Q}$. Let $\epsilon>0$ be given. Choose $N \in \mathbb{N}$ such that $N>\frac{1}{\epsilon} \cdot \frac{1}{N} \in \mathbb{Q}$, therefore $q+\frac{1}{N} \in \mathbb{Q}$. Also, $\frac{1}{N}<\epsilon$. Hence q is a limit point of \mathbb{Q}. As every point of \mathbb{Q} is a limit point of \mathbb{Q}, it contains no isolated points.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function.
(a) Suppose $c \in \mathbb{R}$ and $f(c)>0$. Show that there is a $\delta>0$ such that $f(x)>0$ for all $x \in(c-\delta, c+\delta)$.
(b) Consider $Z=\{x \in \mathbb{R}: f(x)=0\}$. Show that Z contains all its limit points.

Solution by Prateek Karandikar:

(a) Let $\epsilon=\frac{f(c)}{2}$. By continuity of f, there exists a $\delta>0$ such that for all $x \in(c-\delta, c+\delta)$, $f(x) \in(f(c)-\epsilon, f(c)+\epsilon)$. Therefore for all $x \in(c-\delta, c+\delta), f(x) \in\left(\frac{f(c)}{2}, \frac{3 f(c)}{2}\right)$, and so $f(x)>0$.
(b) Let a be any limit point of Z. Choose a sequence a_{n} such that for all $n \in \mathbb{N}, a_{n} \in Z$ and $\left|a_{n}-a\right|<\frac{1}{2^{n}}$. Such a sequence exists as a is a limit point of Z. Then $\lim _{n \rightarrow \infty} a_{n}=a$. By continuity of $f, \lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(a)$. For all $n \in \mathbb{N}, f\left(a_{n}\right)=0$. Hence $f(a)=0$ and $a \in Z$.

