http://www.isibang.ac.in/~athreya/analysis06
Solution HW 8

1. Assume $a_{n}>0$ and that $\sum_{n=1}^{\infty} a_{n}<\infty$. Does it imply that $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}<\infty$? Solution by Prateek Karandikar:

Yes. For all $n \in \mathbb{N}$, define $b_{n}=\sqrt{a_{n} a_{n+1}}$ and $c_{n}=\left(a_{n}+a_{n+1}\right) / 2$. Note that

$$
c_{n}-b_{n}=\frac{a_{n}+a_{n+1}-2 \sqrt{a_{n} a_{n+1}}}{2}=\frac{\left(\sqrt{a_{n}}-\sqrt{a_{n+1}}\right)^{2}}{2} \geq 0
$$

Therefore $0 \leq b_{n} \leq c_{n}$ (AM-GM inequality). Define the partial sum sequences $S_{n}=$ $\sum_{k=1}^{n} a_{n}$ and $T_{n}=\sum_{k=1}^{n} c_{n}$.

$$
\begin{aligned}
T_{n} & =\sum_{k=1}^{n} \frac{a_{n}+a_{n+1}}{2} \\
& =\sum_{k=1}^{n} \frac{a_{n}}{2}+\sum_{k=2}^{n+1} \frac{a_{n}}{2} \\
& =\frac{a_{1}}{2}+\sum_{k=2}^{n} a_{n}+\frac{a_{n+1}}{2} \\
& =S_{n}-\frac{a_{1}}{2}+\frac{a_{n+1}}{2}
\end{aligned}
$$

As $\sum_{n=1}^{\infty} a_{n}$ is convergent, $\lim _{n \rightarrow \infty} a_{n}=0$ and $\lim _{n \rightarrow \infty} S_{n}$ exists in \mathbb{R}. Hence

$$
\begin{aligned}
\lim _{n \rightarrow \infty} T_{n} & =\lim _{n \rightarrow \infty} S_{n}-\frac{a_{1}}{2}+\lim _{n \rightarrow \infty} \frac{a_{n+1}}{2} \\
& =\lim _{n \rightarrow \infty} S_{n}-\frac{a_{1}}{2}
\end{aligned}
$$

As $\lim _{n \rightarrow \infty} T_{n}$ exists in \mathbb{R}, the series $\sum_{n=1}^{\infty} c_{n}$ is convergent. $0 \leq b_{n} \leq c_{n}$ for all $n \in \mathbb{N}$, hence by the comparion test $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}<\infty$.
3. Let a_{n} be a sequence of real numbers and $a_{n_{k}}$ be a subsequence of the same. Suppose $\sum_{n=1}^{\infty} a_{n}$ converges. Does it imply that $\sum_{k=1}^{\infty} a_{n_{k}}$ converges?

Solution by Prateek Karandikar:

No. Here is a counterexample. Let $a_{n}=(-1)^{n} / n$. We have seen in class that $\sum_{n=1}^{\infty} a_{n}$ converges. Let $n_{k}=2 k$. Then

$$
a_{n_{k}}=a_{2 k}=\frac{(-1)^{2 k}}{2 k}=\frac{1}{2 k}
$$

As $\sum_{k=1}^{\infty} 1 / k$ does not converge, $\sum_{k=1}^{\infty} 1 / 2 k$ also does not converge.
6. Let $p \in \mathbb{R}$. Decide whether $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{(n+1)^{p}}$ converges.

Solution by Prateek Karandikar:

Let $a_{n}=(-1)^{n} \frac{\sqrt{n}}{(n+1)^{p}}$. We will treat the two cases $p \leq \frac{1}{2}$ and $p>\frac{1}{2}$ separately.
First consider the case $p \leq \frac{1}{2}$. As $n+1 \geq 1,(n+1)^{p} \leq(n+1)^{1 / 2}$. Also,

$$
\begin{aligned}
\frac{n}{n+1}-\frac{1}{2} & =\frac{n-1}{2 n+2} \geq 0 \\
\frac{n}{n+1} & \geq \frac{1}{2}>0 \\
\sqrt{\frac{n}{n+1}} & \geq \sqrt{\frac{1}{2}}
\end{aligned}
$$

We will now show that $\left\{a_{n}\right\}_{n=1}^{\infty}$ does not converge to 0 .

$$
\begin{aligned}
\left|a_{n}\right| & =\frac{\sqrt{n}}{(n+1)^{p}} \\
& \geq \sqrt{\frac{n}{n+1}} \\
& \geq \sqrt{\frac{1}{2}} \\
& >0
\end{aligned}
$$

As $\left|a_{n}\right|$ is greater than or equal to a constant greater than 0 for all $n \in \mathbb{N},\left\{a_{n}\right\}_{n=1}^{\infty}$ cannot converge to 0 . Hence if $p \leq \frac{1}{2}$ the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{(n+1)^{p}}$ does not converge.

Now consider the case $p>\frac{1}{2}$. Define

$$
b_{n}=(-1)^{n} \sqrt{\frac{n}{n+1}}, c_{n}=\frac{1}{(n+1)^{p-\frac{1}{2}}}
$$

Therefore $a_{n}=b_{n} c_{n}$. As $p-\frac{1}{2}>0, \lim _{n \rightarrow \infty} c_{n}=0 . c_{n}>0$. Note that

$$
\frac{c_{n+1}}{c_{n}}=\left(\frac{n+1}{n+2}\right)^{p-\frac{1}{2}} \leq 1
$$

Hence $\left\{c_{n}\right\}_{n=1}^{\infty}$ is decreasing. We will now show that the partial sum sequence of $\left\{b_{n}\right\}_{n=1}^{\infty}$ is bounded. Define

$$
d_{n}=\sqrt{\frac{n}{n+1}}
$$

$b_{n}=(-1)^{n} d_{n}$ and $0 \leq d_{n} \leq 1$.

$$
\begin{aligned}
\frac{n+1}{n+2}-\frac{n}{n+1} & =\frac{\left(n^{2}+2 n+1\right)-\left(n^{2}+2 n\right)}{(n+1)(n+2)} \\
& =\frac{1}{(n+1)(n+2)} \\
& >0 \\
\frac{n+1}{n+2} & >\frac{n}{n+1} \\
\sqrt{\frac{n+1}{n+2}} & >\sqrt{\frac{n}{n+1}} \\
d_{n+1} & >d_{n}
\end{aligned}
$$

Hence $\left\{d_{n}\right\}_{n=1}^{\infty}$ is increasing. Define the partial sum sequence of $\left\{b_{n}\right\}_{n=1}^{\infty}, S_{n}=$ $\sum_{k=1}^{n} b_{k}=\sum_{k=1}^{n}(-1)^{k} d_{k}$. In what follows we will use the facts that $0 \leq d_{n} \leq 1$ and that $\left\{d_{n}\right\}_{n=1}^{\infty}$ is increasing.

$$
\begin{aligned}
S_{2 n} & =\sum_{k=1}^{n}\left(-d_{2 k-1}+d_{2 k}\right) \\
& \geq 0 \\
S_{2 n} & =-d_{1}+\sum_{k=1}^{n-1}\left(d_{2 k}-d_{2 k+1}\right)+d_{2 n} \\
& \leq d_{2 n} \\
& \leq 1 \\
\left|S_{2 n-1}-S_{2 n}\right| & =d_{2 n} \\
& \leq 1
\end{aligned}
$$

As every $k \in \mathbb{N}$ equals $2 n$ or $2 n-1$ for some $n \in \mathbb{N}$, we conclude that $\left|S_{k}\right| \leq 2$ for all $k \in \mathbb{N}$. So we have

1. The partial sum sequence of $\left\{b_{n}\right\}_{n=1}^{\infty}$ is bounded.
2. $c_{n+1} \leq c_{n}$ for all $n \in \mathbb{N}$.
3. $\lim _{n \rightarrow \infty} c_{n}=0$.

Hence $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} b_{n} c_{n}$ is convergent for $p>\frac{1}{2}$.

