1(b).Suppose $\{x_n\}_{n=1}^{\infty}$ is a bounded sequence of real numbers. Let $t_n = \inf\{x_k : k \ge n\}$. Show that $t_n \to t$ for some $t \in \mathbb{R}$ and $t = \liminf_{n \to \infty} x_n$.

Solution by Prateek Karandikar: As $\{x_n\}_{n=1}^{\infty}$ is bounded, there exists $M > 0 \in \mathbb{R}$ such that $|x_n| \leq M$ for all $n \in \mathbb{N}$. Note that

$$t_n = \inf \{x_k : k \ge n\}$$

= min(inf { $x_k : k \ge n+1$ }, x_n)
= min(t_{n+1}, x_n)
 $\le t_{n+1}$

Hence $\{t_n\}_{n=1}^{\infty}$ is an increasing sequence. $\{t_n\}_{n=1}^{\infty}$ is also bounded above by M. Therefore $\{t_n\}_{n=1}^{\infty}$ converges in \mathbb{R} . Let $t = \lim_{n \to \infty} t_n$.

We will now show that t is a limit point of $\{x_n\}_{n=1}^{\infty}$. Set $k_0 = 0$. Suppose $k_0 < k_1 < \cdots < k_n \in \mathbb{N} \cup \{0\}$ have been chosen. As $t_{k_n+1} = \inf\{x_j : j \ge k_n + 1\}$, there exists $k_{n+1} \ge k_n + 1$ such that $0 \le x_{k_{n+1}} - t_{k_n+1} < 2^{-n}$.

 $\{t_{k_n+1}\}_{n=1}^{\infty}$ is a subsequence of $\{t_n\}_{n=1}^{\infty}$ and hence converges to t. Define a sequence $\{y_n\}_{n=1}^{\infty}$ by $y_n = x_{k_{n+1}} - t_{k_n+1}$. As shown above $0 \leq y_n < 2^{-n} \forall n \in \mathbb{N}$. So $\{y_n\}_{n=1}^{\infty}$ converges to 0.

$$\begin{aligned} x_{k_{n+1}} &= t_{k_n+1} + y_n \\ \lim_{n \to \infty} x_{k_{n+1}} &= \lim_{n \to \infty} t_{k_n+1} + \lim_{n \to \infty} y_n \\ \lim_{n \to \infty} x_{k_{n+1}} &= t + 0 \end{aligned}$$

Note that the second step above uses the fact that the sum of two convergent sequences always converges, and converges to the sum of the limits. $\{x_{k_{n+1}}\}_{n=1}^{\infty}$ is a subsequence of $\{x_n\}_{n=1}^{\infty}$ converging to t, hence t is a limit point of $\{x_n\}_{n=1}^{\infty}$.

Let $\epsilon > 0 \in \mathbb{R}$. There exists a $N_0 \in \mathbb{N}$ such that $|t_n - t| = t - t_n < \epsilon$ for all $n \ge N_0$. Therefore $x_n \ge t_n > t - \epsilon$ for all $n \ge N_0$. So we conclude that $t = \liminf_{n \to \infty} x_n$. As $\epsilon > 0$ was arbitrary we have shown that s < t then there is a N_0 such that $x_n > s$ for all $n \ge N_0$.

1

2. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Suppose the sequence is not bounded. Then show that there is either a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ such that $x_{n_k} \to \infty$ or a subsequence $\{x_{m_k}\}_{k=1}^{\infty}$ such that $x_{m_k} \to -\infty$.

Solution by Prateek Karandikar : It is given that the sequence $\{x_n\}_{n=1}^{\infty}$ is not bounded above or not bounded below.

First consider the situation when $\{x_n\}_{n=1}^{\infty}$ is not bounded above. For every $M \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that $x_n > M$. We will now construct a subsequence of $\{x_n\}_{n=1}^{\infty}$ whose limit is ∞ . Set $n_1 = 1$. Suppose $n_1 < n_2 < \cdots < n_k \in \mathbb{N}$ have been chosen. Let $M = \max\{x_i : 1 \le i \le n_k\} + 1$. Note that we are taking the maximum of a finite non-empty set. There exists $p \in \mathbb{N}$ such that $x_p > M$. p must be greater than n_k , for if $p \le n_k$, then $x_p > M \ge x_p + 1$, which is a contradiction. Hence $p > n_k$. Set $n_{k+1} = p$.

Note that for all $k \in \mathbb{N}$, $x_{n_{k+1}} > x_{n_k} + 1$. Hence $x_{n_k} \ge x_1 + k - 1$. Let $A \in \mathbb{R}$. Choose $K_0 \in \mathbb{N}$ such that $K_0 > A - x_1 + 1$. For all $k \ge K_0$,

$$\begin{array}{rcl} x_{n_k} & \geq & x_1 + k - 1 \\ & \geq & x_1 + K_0 - 1 \\ & > & A \end{array}$$

Hence $\lim_{k\to\infty} x_{n_k} = \infty$.

Now consider the case when $\{x_n\}_{n=1}^{\infty}$ is not bounded below. For every $M \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that $x_n < M$. We will now construct a subsequence of $\{x_n\}_{n=1}^{\infty}$ whose limit is $-\infty$. Set $m_1 = 1$. Suppose $m_1 < m_2 < \cdots < m_k \in \mathbb{N}$ have been chosen. Let $M = \min\{x_i : 1 \leq i \leq m_k\} - 1$. Note that we are taking the minimum of a finite non-empty set. There exists $p \in \mathbb{N}$ such that $x_p < M$. p must be greater than m_k , for if $p \leq m_k$, then $x_p < M \leq x_p - 1$, which is a contradiction. Hence $p > m_k$. Set $m_{k+1} = p$.

Note that for all $k \in \mathbb{N}$, $x_{m_{k+1}} < x_{m_k} - 1$. Hence $x_{m_k} \leq x_1 - k + 1$. Let $A \in \mathbb{R}$. Choose $K_0 \in \mathbb{N}$ such that $K_0 > x_1 - A + 1$. For all $k \geq K_0$,

$$\begin{array}{rcl} x_{m_k} & \leq & x_1 - k + 1 \\ & \leq & x_1 - K_0 + 1 \\ & < & A \end{array}$$

Hence $\lim_{k\to\infty} x_{m_k} = -\infty$.

7. Suppose $\{z_n\}_{n=1}^{\infty}$ is a sequence of real numbers. Decide whether the series $\sum_{n=1}^{\infty} z_n$

converges in each of the following cases:

(i)
$$z_n = \frac{\sqrt{n}}{2n^3 - 1}$$

(ii) $z_n = \left(\frac{n}{2n+1}\right)^n$
(iii) $z_n = \frac{n^2 - n + 1}{n^3 + 1}$

Solution by Prateek Karandikar:

(i) $z_n = \frac{\sqrt{n}}{2n^3 - 1}$ For $n \in \mathbb{N}$,

$$1 - \frac{1}{2 - \frac{1}{n^3}} = 1 - \frac{n^3}{2n^3 - 1} = \frac{2n^3 - 1 - n^3}{2n^3 - 1} = \frac{n^3 - 1}{2n^3 - 1} \ge 0.$$

Hence $\frac{1}{2-\frac{1}{n^3}} \leq 1$. So

$$0 \le z_n = \frac{\sqrt{n}}{2n^3 - 1} = \frac{1}{n^{2.5}} \frac{1}{2 - \frac{1}{n^3}} \le n^{-2.5}, \ \forall n \in \mathbb{N}$$

As $\sum_{n=1}^{\infty} n^{-2.5}$ converges, by the comparison test, $\sum_{n=1}^{\infty} z_n$ also converges. (ii) $z_n = \left(\frac{n}{2n+1}\right)^n$ For $n \in \mathbb{N}$, $|z_n|^{1/n} = z_n^{1/n}$

$$z_n^{1/n} = z_n^{1/n}$$

= $\frac{n}{2n+1}$
= $\frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2n+1}$

As $\lim_{n\to\infty} |z_n|^{1/n}$ exists and is equal to $\frac{1}{2}$ we have,

$$\limsup_{n \to \infty} |z_n|^{1/n} = \lim_{n \to \infty} |z_n|^{1/n} = \frac{1}{2} < 1$$

Therefore by the root test, $\sum_{n=1}^{\infty} z_n$ converges.

(iii) $z_n = \frac{n^2 - n + 1}{n^3 + 1}$ For $n \in \mathbb{N}$ such that $n \ge 2$,

$$n \geq 2$$

$$n^{3} \geq 2n^{2}$$

$$n^{3} + 2n \geq 2n^{2} + 1$$

$$n^{3} - 2n^{2} + 2n - 1 \geq 0$$

$$\frac{n^{3} - 2n^{2} + 2n - 1}{2n^{3} + 2} \geq 0$$

$$\frac{n^{3} - n^{2} + n}{n^{3} + 1} - \frac{1}{2} \geq 0$$

$$\frac{n^{3} - n^{2} + n}{n^{3} + 1} \geq \frac{1}{2}$$

Note that the last inequality holds for n = 1 also. For all $n \in \mathbb{N}$,

$$z_n = \frac{n^2 - n + 1}{n^3 + 1}$$
$$= \frac{1}{n} \cdot \frac{n^3 - n^2 + n}{n^3 + 1}$$
$$\geq \frac{1}{n} \cdot \frac{1}{2}$$
$$\geq 0$$

As $\sum_{n=1}^{\infty} n^{-1}$ diverges, $\sum_{n=1}^{\infty} (2n)^{-1}$ also diverges, and hence by the comparison test $\sum_{n=1}^{\infty} z_n$ diverges.

4