1(b).Suppose $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence of real numbers. Let $t_{n}=\inf \left\{x_{k}: k \geq\right.$ $n\}$. Show that $t_{n} \rightarrow t$ for some $t \in \mathbb{R}$ and $t=\lim \inf _{n \rightarrow \infty} x_{n}$.

Solution by Prateek Karandikar: As $\left\{x_{n}\right\}_{n=1}^{\infty}$ is bounded, there exists $M>0 \in \mathbb{R}$ such that $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$. Note that

$$
\begin{aligned}
t_{n} & =\inf \left\{x_{k}: k \geq n\right\} \\
& =\min \left(\inf \left\{x_{k}: k \geq n+1\right\}, x_{n}\right) \\
& =\min \left(t_{n+1}, x_{n}\right) \\
& \leq t_{n+1}
\end{aligned}
$$

Hence $\left\{t_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence. $\left\{t_{n}\right\}_{n=1}^{\infty}$ is also bounded above by M. Therefore $\left\{t_{n}\right\}_{n=1}^{\infty}$ converges in \mathbb{R}. Let $t=\lim _{n \rightarrow \infty} t_{n}$.

We will now show that t is a limit point of $\left\{x_{n}\right\}_{n=1}^{\infty}$. Set $k_{0}=0$. Suppose $k_{0}<k_{1}<$ $\cdots<k_{n} \in \mathbb{N} \cup\{0\}$ have been chosen. As $t_{k_{n}+1}=\inf \left\{x_{j}: j \geq k_{n}+1\right\}$, there exists $k_{n+1} \geq k_{n}+1$ such that $0 \leq x_{k_{n+1}}-t_{k_{n}+1}<2^{-n}$.
$\left\{t_{k_{n}+1}\right\}_{n=1}^{\infty}$ is a subsequence of $\left\{t_{n}\right\}_{n=1}^{\infty}$ and hence converges to t. Define a sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ by $y_{n}=x_{k_{n+1}}-t_{k_{n}+1}$. As shown above $0 \leq y_{n}<2^{-n} \forall n \in \mathbb{N}$. So $\left\{y_{n}\right\}_{n=1}^{\infty}$ converges to 0 .

$$
\begin{aligned}
x_{k_{n+1}} & =t_{k_{n}+1}+y_{n} \\
\lim _{n \rightarrow \infty} x_{k_{n+1}} & =\lim _{n \rightarrow \infty} t_{k_{n}+1}+\lim _{n \rightarrow \infty} y_{n} \\
\lim _{n \rightarrow \infty} x_{k_{n+1}} & =t+0
\end{aligned}
$$

Note that the second step above uses the fact that the sum of two convergent sequences always converges, and converges to the sum of the limits. $\left\{x_{k_{n+1}}\right\}_{n=1}^{\infty}$ is a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ converging to t, hence t is a limit point of $\left\{x_{n}\right\}_{n=1}^{\infty}$.

Let $\epsilon>0 \in \mathbb{R}$. There exists a $N_{0} \in \mathbb{N}$ such that $\left|t_{n}-t\right|=t-t_{n}<\epsilon$ for all $n \geq N_{0}$. Therefore $x_{n} \geq t_{n}>t-\epsilon$ for all $n \geq N_{0}$. So we conclude that $t=\liminf _{n \rightarrow \infty} x_{n}$. As $\epsilon>0$ was arbitrary we have shown that $s<t$ then there is a N_{0} such that $x_{n}>s$ for all $n \geq N_{0}$.
2. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. Suppose the sequence is not bounded. Then show that there is either a subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ such that $x_{n_{k}} \rightarrow \infty$ or a subsequence $\left\{x_{m_{k}}\right\}_{k=1}^{\infty}$ such that $x_{m_{k}} \rightarrow-\infty$.

Solution by Prateek Karandikar : It is given that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is not bounded above or not bounded below.

First consider the situation when $\left\{x_{n}\right\}_{n=1}^{\infty}$ is not bounded above. For every $M \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that $x_{n}>M$. We will now construct a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ whose limit is ∞. Set $n_{1}=1$. Suppose $n_{1}<n_{2}<\cdots<n_{k} \in \mathbb{N}$ have been chosen. Let $M=\max \left\{x_{i}: 1 \leq i \leq n_{k}\right\}+1$. Note that we are taking the maximum of a finite non-empty set. There exists $p \in \mathbb{N}$ such that $x_{p}>M . p$ must be greater than n_{k}, for if $p \leq n_{k}$, then $x_{p}>M \geq x_{p}+1$, which is a contradiction. Hence $p>n_{k}$. Set $n_{k+1}=p$.

Note that for all $k \in \mathbb{N}, x_{n_{k+1}}>x_{n_{k}}+1$. Hence $x_{n_{k}} \geq x_{1}+k-1$. Let $A \in \mathbb{R}$. Choose $K_{0} \in \mathbb{N}$ such that $K_{0}>A-x_{1}+1$. For all $k \geq K_{0}$,

$$
\begin{aligned}
x_{n_{k}} & \geq x_{1}+k-1 \\
& \geq x_{1}+K_{0}-1 \\
& >A
\end{aligned}
$$

Hence $\lim _{k \rightarrow \infty} x_{n_{k}}=\infty$.
Now consider the case when $\left\{x_{n}\right\}_{n=1}^{\infty}$ is not bounded below. For every $M \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that $x_{n}<M$. We will now construct a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ whose limit is $-\infty$. Set $m_{1}=1$. Suppose $m_{1}<m_{2}<\cdots<m_{k} \in \mathbb{N}$ have been chosen. Let $M=\min \left\{x_{i}: 1 \leq i \leq m_{k}\right\}-1$. Note that we are taking the minimum of a finite non-empty set. There exists $p \in \mathbb{N}$ such that $x_{p}<M . p$ must be greater than m_{k}, for if $p \leq m_{k}$, then $x_{p}<M \leq x_{p}-1$, which is a contradiction. Hence $p>m_{k}$. Set $m_{k+1}=p$.

Note that for all $k \in \mathbb{N}, x_{m_{k+1}}<x_{m_{k}}-1$. Hence $x_{m_{k}} \leq x_{1}-k+1$. Let $A \in \mathbb{R}$. Choose $K_{0} \in \mathbb{N}$ such that $K_{0}>x_{1}-A+1$. For all $k \geq K_{0}$,

$$
\begin{aligned}
x_{m_{k}} & \leq x_{1}-k+1 \\
& \leq x_{1}-K_{0}+1 \\
& <A
\end{aligned}
$$

Hence $\lim _{k \rightarrow \infty} x_{m_{k}}=-\infty$.
7. Suppose $\left\{z_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers. Decide whether the series $\sum_{n=1}^{\infty} z_{n}$
converges in each of the following cases:

$$
\begin{aligned}
\text { (i) } z_{n} & =\frac{\sqrt{n}}{2 n^{3}-1} \\
\text { (ii) } z_{n} & =\left(\frac{n}{2 n+1}\right)^{n} \\
\text { (iii) } z_{n} & =\frac{n^{2}-n+1}{n^{3}+1}
\end{aligned}
$$

Solution by Prateek Karandikar:
(i) $z_{n}=\frac{\sqrt{n}}{2 n^{3}-1}$

For $n \in \mathbb{N}$,

$$
1-\frac{1}{2-\frac{1}{n^{3}}}=1-\frac{n^{3}}{2 n^{3}-1}=\frac{2 n^{3}-1-n^{3}}{2 n^{3}-1}=\frac{n^{3}-1}{2 n^{3}-1} \geq 0
$$

Hence $\frac{1}{2-\frac{1}{n^{3}}} \leq 1$. So

$$
0 \leq z_{n}=\frac{\sqrt{n}}{2 n^{3}-1}=\frac{1}{n^{2.5}} \frac{1}{2-\frac{1}{n^{3}}} \leq n^{-2.5}, \forall n \in \mathbb{N}
$$

As $\sum_{n=1}^{\infty} n^{-2.5}$ converges, by the comparison test, $\sum_{n=1}^{\infty} z_{n}$ also converges.
(ii) $z_{n}=\left(\frac{n}{2 n+1}\right)^{n}$

For $n \in \mathbb{N}$,

$$
\begin{aligned}
\left|z_{n}\right|^{1 / n} & =z_{n}^{1 / n} \\
& =\frac{n}{2 n+1} \\
& =\frac{1}{2}-\frac{1}{2} \cdot \frac{1}{2 n+1}
\end{aligned}
$$

As $\lim _{n \rightarrow \infty}\left|z_{n}\right|^{1 / n}$ exists and is equal to $\frac{1}{2}$ we have,

$$
\limsup _{n \rightarrow \infty}\left|z_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty}\left|z_{n}\right|^{1 / n}=\frac{1}{2}<1
$$

Therefore by the root test, $\sum_{n=1}^{\infty} z_{n}$ converges.
(iii) $z_{n}=\frac{n^{2}-n+1}{n^{3}+1}$

For $n \in \mathbb{N}$ such that $n \geq 2$,

$$
\begin{aligned}
n & \geq 2 \\
n^{3} & \geq 2 n^{2} \\
n^{3}+2 n & \geq 2 n^{2}+1 \\
\frac{n^{3}-2 n^{2}+2 n-1}{} & \geq 0 \\
\frac{n^{3}-2 n^{2}+2 n-1}{2 n^{3}+2} & \geq 0 \\
\frac{n^{3}-n^{2}+n}{n^{3}+1}-\frac{1}{2} & \geq 0 \\
\frac{n^{3}-n^{2}+n}{n^{3}+1} & \geq \frac{1}{2}
\end{aligned}
$$

Note that the last inequality holds for $n=1$ also. For all $n \in \mathbb{N}$,

$$
\begin{aligned}
z_{n} & =\frac{n^{2}-n+1}{n^{3}+1} \\
& =\frac{1}{n} \cdot \frac{n^{3}-n^{2}+n}{n^{3}+1} \\
& \geq \frac{1}{n} \cdot \frac{1}{2} \\
& \geq 0
\end{aligned}
$$

As $\sum_{n=1}^{\infty} n^{-1}$ diverges, $\sum_{n=1}^{\infty}(2 n)^{-1}$ also diverges, and hence by the comparison test $\sum_{n=1}^{\infty} z_{n}$ diverges.

