Question 5: If $a \in \mathbb{R}$ such that $0 \leq a<\epsilon$ for every $\epsilon>0$, then show that $a=0$.

Solution by Prateek Karandikar: We will prove this by contradiction. Suppose $a \neq 0$. Then, since it is given that $a \geq 0, a>0$. By taking $\epsilon=a$, we conclude that $a<a$, which is a contradiction. Hence $a=0$.

Question 7: Let A and B be bounded nonempty subsets of \mathbb{R}, and let $A+B:=\{a+b: a \in$ $A, b \in B\}$. Prove that

$$
\sup (A+B)=\sup (A)+\sup (B)
$$

and

$$
\inf (A+B)=\inf (A)+\inf (B)
$$

Solution by Prateek Karandikar: We will first prove that $\sup (A+B)=\sup (A)+\sup (B)$. Let $\alpha=\sup (A)$ and $\beta=\sup (B)$. As $\alpha \geq a \forall a \in A$ and $\beta \geq b \forall b \in B$, we conclude that $\alpha+\beta \geq a+b \forall a \in A, b \in B$. Hence $\alpha+\beta \geq x \forall x \in(A+B)$. So $\alpha+\beta$ is an upper bound of $A+B$.

Let $\gamma<\alpha+\beta$. Let $\epsilon=(\alpha+\beta-\gamma) / 2$. Note that $\epsilon>0$. As $\alpha-\epsilon$ is not an upper bound of $A, \exists a^{\prime} \in A \ni a^{\prime}>\alpha-\epsilon$. As $\beta-\epsilon$ is not an upper bound of $B, \exists b^{\prime} \in B \ni b^{\prime}>\beta-\epsilon$. Now, $a^{\prime}+b^{\prime}>(\alpha-\epsilon)+(\beta-\epsilon)=\gamma$. So we have found $x=a^{\prime}+b^{\prime} \in A+B$ such that $x>\gamma$.

Hence, $\sup (A+B)=\alpha+\beta=\sup (A)+\sup (B)$.
For any $X \subseteq \mathbb{R}$, define $-X:=\{-x: x \in X\}$. So, for any $y \in \mathbb{R}, y \in X \Longleftrightarrow(-y) \in(-X)$.

$$
\begin{aligned}
(-A)+(-B) & =\{x+y: x \in(-A), y \in(-B)\} \\
& =\{(-x)+(-y): x \in A, y \in B\} \\
& =\{-(x+y): x \in A, y \in B\} \\
& =\{-z: z \in(A+B)\} \\
& =-(A+B)
\end{aligned}
$$

We know that if $X \subseteq \mathbb{R}$ is non-empty and bounded below, $\inf (X)=-\sup (-X)$. Hence,

$$
\begin{aligned}
\inf (A+B) & =-\sup (-(A+B)) \\
& =-\sup ((-A)+(-B)) \\
& =-(\sup (-A)+\sup (-B)) \\
& =-\sup (-A)-\sup (-B) \\
& =\inf (A)+\inf (B)
\end{aligned}
$$

Question 9: Show that the set \mathbb{Z} of integers is countable.

Solution: Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ by

$$
f(n)=\left\{\begin{aligned}
n / 2 & \text { if } n \in \mathbb{N} \text { and is even } \\
-(n-1) / 2 & \text { if } n \in \mathbb{N} \text { and is odd }
\end{aligned}\right.
$$

We will now show that f is a bijection. Suppose that for some $n_{1}, n_{2} \in \mathbb{N}, f\left(n_{1}\right)=f\left(n_{2}\right)$. This implies

$$
\frac{n_{1}}{2}=\frac{n_{1}}{2} \Rightarrow n_{1}=n_{2}
$$

So, f is one-one. Let $m \in \mathbb{Z}$ and $m \leq 0$. Then $-2 m+1 \in \mathbb{N}$, is odd and $f(-2 m+1)=m$. Suppose $m \in \mathbb{Z}$ and $m>0$. Then $2 m \in \mathbb{N}$, is even and $f(2 m)=m$. Therefore f is onto. As f is a bijection from \mathbb{N} to \mathbb{Z}, \mathbb{Z} is countable.

