Question 5: Let A be a non-empty set of real numbers which is bounded below. Let $-A:=$ $\{x \in \mathbb{R}:-x \in A\}$. Show that $\inf (A)=-\sup (-A)$.
[Solution by Prateek Karandikar]: A is non-empty and bounded below, so it has a greatest lower bound. Let $\alpha=\inf (A)$.

As α is a lower bound of $A, \alpha \leq x \quad \forall x \in A$. Therefore $-\alpha \geq-x \forall x \in A$. As $x \in A \Longleftrightarrow$ $-x \in-A$, we conclude that $-\alpha \geq x \forall x \in-A$. This shows that $-\alpha$ is an upper bound of $-A$.

Let $\gamma<-\alpha$. To show that $-\alpha$ is the least upper bound of $-A$, we need to show that $\exists y \in$ $-A \ni y>\gamma$. Let $\beta=-\gamma$. So $\beta>\alpha$. As α is the greatest lower bound of $A, \Rightarrow \exists x \in A \ni x<\beta$. So $\exists x \in A \ni x<-\gamma$. As $-x \in-A$ and $-x>\gamma$, we have found a $y \in-A$, namely $-x$, such that $y>\gamma$.

So we conclude that $-\alpha$ is the least upper bound of $-A$. So $\inf (A)=\alpha=-(-\alpha)=-\sup (-A)$.

Question 7: If $z, w, z_{i} \in \mathbb{C}$ for $i=1,2, \ldots, n$ then show that

$$
\left|z_{1}+z_{2}+\cdots+z_{n}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\cdots+\left|z_{n}\right|
$$

and

$$
||z|-|w|| \leq|z-w|
$$

[Solution by Prateek Karandikar]: We will prove the first inequality by induction on n. Let $\mathcal{P}(n)$ be the statement:

$$
\left|\sum_{i=1}^{n} z_{i}\right| \leq \sum_{i=1}^{n}\left|z_{i}\right|
$$

where $z_{i} \in \mathbb{C}$ for $i=1,2, \ldots n$.

Now, $\mathcal{P}(1)$ is true as $\left|z_{1}\right|=\left|z_{1}\right|$. We have seen in class that $\mathcal{P}(2)$ is true. Let $\mathcal{P}(k)$ be true for some $k \in \mathbb{N}$ such that $k \geq 2$. We will show that $\mathcal{P}(k+1)$ is true. Let $z_{1}, \ldots, z_{k}, z_{k+1} \in \mathbb{C}$.

$$
\begin{aligned}
\left|\sum_{i=1}^{k+1} z_{i}\right| & =\left|\left(\sum_{i=1}^{k} z_{i}\right)+z_{k+1}\right| \\
& \leq\left|\sum_{i=1}^{k} z_{i}\right|+\left|z_{k+1}\right| \\
& \leq\left(\sum_{i=1}^{k}\left|z_{i}\right|\right)+\left|z_{k+1}\right|=\sum_{i=1}^{k+1}\left|z_{i}\right|
\end{aligned}
$$

where in the second step we have used $\mathcal{P}(2)$ and in the last step we have used the inductive hypothses. This proves $\mathcal{P}(k+1)$. Hence by the principle of mathematical induction, $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.

Now we will prove the second inequality. For any $a, b \in \mathbb{R}$,

$$
|a+i b|=\sqrt{a^{2}+b^{2}}=\sqrt{(-a)^{2}+(-b)^{2}}=|-(a+i b)|
$$

Hence $\left|z_{1}\right|=\left|-z_{1}\right| \forall z \in \mathbb{C}$. In particular, $|z-w|=|w-z|$. Now,

$$
\begin{gathered}
|z|=|(z-w)+w| \leq|z-w|+|w| \\
|z|-|w| \leq|z-w|
\end{gathered}
$$

Interchanging w and z,

$$
|w|-|z| \leq|w-z|=|z-w|
$$

Since $|w|$ and $|z|$ are reals, $||z|-|w||$ equals at least one of $|z|-|w|$ and $|w|-|z|$, both of which are less than or equal to $|z-w|$. Hence,

$$
\| z|-|w|| \leq|z-w|
$$

