Question 5: Let A be a non-empty set of real numbers which is bounded below. Let $-A := \{x \in \mathbb{R} : -x \in A\}$. Show that $\inf(A) = -\sup(-A)$.

[Solution by Prateek Karandikar]: A is non-empty and bounded below, so it has a greatest lower bound. Let $\alpha = \inf(A)$.

As α is a lower bound of A, $\alpha \leq x \quad \forall x \in A$. Therefore $-\alpha \geq -x \forall x \in A$. As $x \in A \iff -x \in -A$, we conclude that $-\alpha \geq x \forall x \in -A$. This shows that $-\alpha$ is an upper bound of -A.

Let $\gamma < -\alpha$. To show that $-\alpha$ is the least upper bound of -A, we need to show that $\exists y \in -A \ni y > \gamma$. Let $\beta = -\gamma$. So $\beta > \alpha$. As α is the greatest lower bound of A, $\Rightarrow \exists x \in A \ni x < \beta$. So $\exists x \in A \ni x < -\gamma$. As $-x \in -A$ and $-x > \gamma$, we have found a $y \in -A$, namely -x, such that $y > \gamma$.

So we conclude that $-\alpha$ is the least upper bound of -A. So $\inf(A) = \alpha = -(-\alpha) = -\sup(-A)$.

Question 7: If $z, w, z_i \in \mathbb{C}$ for i = 1, 2, ..., n then show that

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|$$

and

$$||z| - |w|| \le |z - w|$$

[Solution by Prateek Karandikar]: We will prove the first inequality by induction on n. Let $\mathcal{P}(n)$ be the statement:

$$\left|\sum_{i=1}^{n} z_i\right| \le \sum_{i=1}^{n} |z_i|,$$

where $z_i \in \mathbb{C}$ for $i = 1, 2, \ldots n$.

Now, $\mathcal{P}(1)$ is true as $|z_1| = |z_1|$. We have seen in class that $\mathcal{P}(2)$ is true. Let $\mathcal{P}(k)$ be true for some $k \in \mathbb{N}$ such that $k \geq 2$. We will show that $\mathcal{P}(k+1)$ is true. Let $z_1, \ldots, z_k, z_{k+1} \in \mathbb{C}$.

$$\begin{aligned} \sum_{i=1}^{k+1} z_i \middle| &= \left| \left(\sum_{i=1}^k z_i \right) + z_{k+1} \right| \\ &\leq \left| \sum_{i=1}^k z_i \right| + |z_{k+1}| \\ &\leq \left(\sum_{i=1}^k |z_i| \right) + |z_{k+1}| = \sum_{i=1}^{k+1} |z_i|, \end{aligned}$$

where in the second step we have used $\mathcal{P}(2)$ and in the last step we have used the inductive hypothese. This proves $\mathcal{P}(k+1)$. Hence by the principle of mathematical induction, $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.

Now we will prove the second inequality. For any $a, b \in \mathbb{R}$,

$$|a+ib| = \sqrt{a^2 + b^2} = \sqrt{(-a)^2 + (-b)^2} = |-(a+ib)|$$

Hence $|z_1| = |-z_1| \ \forall \ z \in \mathbb{C}$. In particular, |z - w| = |w - z|. Now,

$$|z| = |(z - w) + w| \le |z - w| + |w|$$
$$|z| - |w| \le |z - w|$$

Interchanging w and z,

$$|w| - |z| \le |w - z| = |z - w|$$

Since |w| and |z| are reals, ||z| - |w|| equals at least one of |z| - |w| and |w| - |z|, both of which are less than or equal to |z - w|. Hence,

$$||z| - |w|| \le |z - w|.$$