Question 3: Let $A=\left\{p \in \mathbb{Q}: p^{2}<2\right\}$. Show that A is bounded above but does not have a least upper bound.
[Solution by Prateek Karandikar]: We will first show that if $x \in \mathbb{Q}$ such that $x>0$ and $x^{2}>2$, then x is an upper bound of $A . x$ is clearly greater than all non-positive elements of A. For all positive $a \in A, a^{2}<2<x^{2}$, and so $a<x$. Hence $a \leq x \forall a \in A$. Therefore x is an upper bound of A. A is bounded above, as can be seen by setting $x=5$.

If possible, let A have a least upper bound, say q. Since $1 \in A, q \geq 1$, and hence $q>0$. If $q^{2}<2$, then $q \in A$, and for it to be an upper bound of A, it must be the largest element in A. We have seen in class that A has no largest element, hence $q^{2} \geq 2$. Also, q^{2} cannot equal 2 , since there exists no $t \in \mathbb{Q}$ such that $t^{2}=2$. Hence $q^{2}>2$.

Now, let

$$
\begin{gathered}
r=\frac{q^{2}+2}{2 q} \\
q-r=q-\frac{q^{2}+2}{2 q}=\frac{q^{2}-2}{2 q}>0
\end{gathered}
$$

The last inequality follows from the fact that $q^{2}>2$ and $q>0$. So $r<q$.

$$
r^{2}-2=\frac{q^{4}+4 q^{2}+4}{4 q^{2}}-2=\frac{q^{4}-4 q^{2}+4}{4 q^{2}}=\left(\frac{q^{2}-2}{2 q}\right)^{2}>0
$$

As $r^{2}>2$ and $r>0, r$ is an upper bound of A. But $r<q$. This contradicts the assumption that q is the least upper bound of A, and so we conclude that A has no least upper bound.

