Due: Tuesday, October 31st, 2006

Problems to be turned in: 5,6

- 1. Suppose A is a subset of \mathbb{R} and c is a limit point of A. Show that there is a sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n \in A$ and $x_n \to c$.
- 2. Let S be a subset of \mathbb{R} that contains at least two points and has the property that: if $x, y \in S$ then $[x, y] \subseteq S$. Show that S is an interval.
- 3. Let I be an interval. Let $f: I \to \mathbb{R}$ be continuous on I. Let $f(I) = \{f(x) : x \in I\}$. Suppose $k \in \mathbb{R}$ is such that inf $f(I) \le k \le \sup f(I)$. Show that there exists a number $c \in I$ such that f(c) = k.
- 4. For each $x \in \mathbb{R}$, let $g^x : \mathbb{R} \to \mathbb{R}$ be given by $g^x(y) = 1_{(-\infty,x]}(y)$ (that is, $g^x(y) = 1$ if $y \le x$ and 0 otherwise). Show that g^x is not continuous at x but is continuous otherwise.
- 5. Let A be a countable subset of \mathbb{R} . Consider $p:A\to [0,1]$ such that $\sum_{n=1}^{\infty}p(x_n)=1$ where $\{x_k:k\in\mathbb{N}\}$ is an enumeration of A. Define $F:\mathbb{R}\to [0,1]$ by $F(x)=\sum_{x_n\le x}p(x_n)\equiv\sum_{n=1}^{\infty}g^x(x_n)p(x_n)$.
 - (a) Show that F is monotonically increasing.
 - (b) Identify the discontinuity points of F and show that F(x+) = F(x) for all $x \in \mathbb{R}$ (where F(x+) is the notation for RHL at x).
 - (c) Show that $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$.
 - (d) By choosing a suitable A and p construct an example of a monotonically increasing function whose points of discontinuity are not isolated.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function.
 - (a) Suppose $c \in \mathbb{R}$ and f(c) > 0. Show that there is a $\delta > 0$ such that f(x) > 0 for all $x \in (c \delta, c + \delta)$
 - (b) Consider $Z = \{x \in \mathbb{R} : f(x) = 0\}$. Show that Z contains all its limit points.
- 7. Find the continuity points of $f: \mathbb{R} \to \mathbb{R}$, when f is given by: (a) $f(x) = \lfloor x \rfloor$ (i.e. greatest integer less than or equal to x), (b) $f(x) = x \lfloor x \rfloor$, and (c) $f(x) = x \lfloor x \rfloor$.
- 8. Show that $g(x) = \sqrt{x}$ is a uniformly continuous function on [0, 1] but is not a Lipschitz function.