Due: Tuesday, October 24th, 2006

Problems to be turned in: 3,5,7

- 1. Let $a, b \in \mathbb{R}$. Show that I = [a, b] is uncountable.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$. Suppose for $c \in \mathbb{R}$

(LHL)
$$L = \lim_{h \downarrow 0} f(c+h)$$

(RHL) $R = \lim_{h \downarrow 0} f(c-h)$

(Notation: $h \downarrow 0$ means $h \in (0, \infty)$ and $h \to 0$)

- (a) Show that $\lim_{x\to c} f(x)$ exists if and only if LHL, RHL exists and are equal.
- (b) If f is continuous at c then show that L = R = f(c).
- 3. Let $a \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$. Decide whether the RHL, LHL, and the limit exists for f at a given by: (a)a = 0, $f(x) = \frac{1}{x}$, $x \neq 0$, and f(0) = 0, (b) a = -2, $f(x) = \begin{cases} x+2 & x < -2 \\ -x-2 & x \geq -2 \end{cases}$, (c) a = 0, $f(x) = \frac{|x|}{x}$, $x \neq 0$, and f(0) = 0,
- 4. Let $f:(0,\infty)\to\mathbb{R}$ be given by:

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{m}{n}, (m, n) = 1, m, n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

Show that f is continuous at every positive irrational number and discontinuous at every positive rational number.

- 5. (Exponential Function: e^x) Consider the function $E: \mathbb{R} \to \mathbb{R}$ given by $E(x) = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}$.
 - (a) Show that E is well defined and E(x+y) = E(x)E(y), for all $x, y \in \mathbb{R}$.
 - (b) Show that E is a continuous and monotonically increasing (strictly) function on \mathbb{R} .
 - (c) Let e = E(1). Show that $E(x) = e^x$ for all $x \in \mathbb{R}$.
 - (d) $\lim_{x\to\infty} x^n e^{-x} = 0$ for all $n \in \mathbb{N}$.
- 6. (Logarithm Function:- $\ln(x)$) Let E be the function defined above. Let $L : (0, \infty) \to \mathbb{R}$ be such that:

$$L(E(y)) = y, \forall y \in \mathbb{R}$$

- (a) Show that L is well defined and L(uv) = L(u) + L(v), for all $u.v \in (0, \infty)$. (L(x) is denoted by $\ln(x)$ for all x > 0)
- (b) Show that L is a continuous monotonically increasing (strictly) function.
- (c) Show that for any $\alpha \in \mathbb{R}$ $x \in [0, \infty)$, $x^{\alpha} = E(\alpha(L(x))) = e^{\alpha \ln(x)}$.
- 7. Let $\alpha \in (0,1), A \subset \mathbb{R}$ A function $f: A \to \mathbb{R}$ is said to be Hölder- α if for all $x, y \in A$

$$|f(x) - f(y)| \le C|x - y|^{\alpha},$$

for some constant C.

- (a) Show that f is a continuous function on A.
- (b) Let $a, b \in \mathbb{R}$. If $f : [a, b] \to \mathbb{R}$ is such that $|f(x) f(y)| \le C|x y|$, for all $x, y \in \mathbb{R}$ and for some constant C then show that f is Hölder- α for all $\alpha \in (0, 1)$ and consequently continuus. Such functions are called Lipschitz functions.