Due: Tuesday, October 24th, 2006

Problems to be turned in: 3,5,7

1. Let $a, b \in \mathbb{R}$. Show that $I=[a, b]$ is uncountable.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Suppose for $c \in \mathbb{R}$

$$
\begin{array}{ll}
(\mathrm{LHL}) & L=\lim _{h \downarrow 0} f(c+h) \\
(\mathrm{RHL}) & R=\lim _{h \downarrow 0} f(c-h)
\end{array}
$$

(Notation: $h \downarrow 0$ means $h \in(0, \infty)$ and $h \rightarrow 0)$
(a) Show that $\lim _{x \rightarrow c} f(x)$ exists if and only if LHL, RHL exists and are equal.
(b) If f is continuous at c then show that $L=R=f(c)$.
3. Let $a \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$. Decide whether the RHL, LHL, and the limit exists for f at a given by: (a) $a=0, f(x)=\frac{1}{x}, x \neq 0$, and $f(0)=0,(\mathrm{~b}) a=-2, f(x)=\left\{\begin{array}{ll}x+2 & x<-2 \\ -x-2 & x \geq-2\end{array}\right.$, (c) $a=0$, $f(x)=\frac{|x|}{x}, x \neq 0$, and $f(0)=0$,
4. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be given by:

$$
f(x)= \begin{cases}\frac{1}{n} & \text { if } x=\frac{m}{n},(m, n)=1, m, n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Show that f is continuous at every positive irrational number and discontinuos at every positive rational number.
5. (Exponential Function:- e^{x}) Consider the function $E: \mathbb{R} \rightarrow \mathbb{R}$ given by $E(x)=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$.
(a) Show that E is well defined and $E(x+y)=E(x) E(y)$, for all $x, y \in \mathbb{R}$.
(b) Show that E is a continuous and monotonically increasing (strictly) function on \mathbb{R}.
(c) Let $e=E(1)$. Show that $E(x)=e^{x}$ for all $x \in \mathbb{R}$.
(d) $\lim _{x \rightarrow \infty} x^{n} e^{-x}=0$ for all $n \in \mathbb{N}$.
6. (Logarithm Function:- $\ln (x))$ Let E be the function defined above. Let $L:(0, \infty) \rightarrow \mathbb{R}$ be such that:

$$
L(E(y))=y, \forall y \in \mathbb{R}
$$

(a) Show that L is well defined and $L(u v)=L(u)+L(v)$, for all $u . v \in(0, \infty) .(L(x)$ is denoted by $\ln (x)$ for all $x>0)$
(b) Show that L is a continuous monotonically increasing (strictly) function.
(c) Show that for any $\alpha \in \mathbb{R} x \in[0, \infty), x^{\alpha}=E(\alpha(L(x)))=e^{\alpha \ln (x)}$.
7. Let $\alpha \in(0,1), A \subset \mathbb{R}$ A function $f: A \rightarrow \mathbb{R}$ is said to be Hölder- α if for all $x, y \in A$

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}
$$

for some constant C.
(a) Show that f is a continuous function on A.
(b) Let $a, b \in \mathbb{R}$. If $f:[a, b] \rightarrow \mathbb{R}$ is such that $|f(x)-f(y)| \leq C|x-y|$, for all $x, y \in \mathbb{R}$ and for some constant C then show that f is Hölder- α for all $\alpha \in(0,1)$ and consequently continous. Such functions are called Lipschitz functions.

