Due: Tuesday, October 17th, 2006

Problems to be turned in:1,3,6

1. Assume $a_{n}>0$ and that $\sum_{n=1}^{\infty} a_{n}<\infty$. Does it imply that $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}<\infty$?
2. Find the radius of convergence of the series $\sum_{n=1}^{\infty} n x^{n}$ and with the radius of convergence give an explicit expression for its sum.
3. Let a_{n} be a sequence of real numbers and $a_{n_{k}}$ be a subsequence of the same. Suppose $\sum_{n=1}^{\infty} a_{n}$ converges. Does it imply that $\sum_{k=1}^{\infty} a_{n_{k}}$ converge ?
4. Let a_{n} be a sequence of non-negative real numbers and suppose that $\lim _{n \rightarrow \infty} a_{n}=0$ and $\sum a_{n}=\infty$. Show that for every $0<p<q$, there is a finite set of terms $\left\{a_{n_{1}}, \ldots, a_{n_{k}}\right\}$ with $p<\sum_{i=0}^{k} a_{n_{i}}<q$.
5. We say that a series diverges unconditionally to ∞ if every rearrangement of the terms diverges to ∞. Show that a series $\sum_{i=0}^{\infty} x_{i}$ diverges unconditionally to ∞ if and only if the sum of positive terms of $\left\{x_{i}\right\}$ diverges to ∞ and the sum of the negative terms of $\left\{x_{i}\right\}$ converges.
6. Let $p \in \mathbb{R}$. Decide whether $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{(n+1)^{p}}$ converges or not.
7. (Extra credit) Suppose two teams play a series of games, each producing a winner and a loser, until one team has won two more games than the other. Let G be the total number of games played. Assuming each team has chance 0.5 to win each game, independent of results of the previous games. Find the expected value of G.
