Due: Wednesday, September 6th, 2006

Problems to be turned in: 1(b), 2,7

- 1. Suppose $\{x_n\}_{n=1}^{\infty}$ is a bounded sequence of real numbers. Let $s_n = \sup\{x_k : k \ge n\}$ and $t_n = \inf\{x_k : k \ge n\}$.
 - (a) Show that $s_n \to s$ for some $s \in \mathbb{R}$ and further that s is a limit point of the sequence $\{x_n\}_{n=1}^{\infty}$.
 - (b) Show that $t_n \to t$ for some $t \in \mathbb{R}$ and $t = \liminf_{n \to \infty} x_n$.
- 2. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Suppose the sequence is not bounded. Then show there is either a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ such that $x_{n_k} \to \infty$ or a subsequence $\{x_{m_k}\}_{k=1}^{\infty}$ such that $x_{m_k} \to -\infty$.
- 3. Suppose $\{x_n\}_{n=1}^{\infty}$ is a sequence of real numbers and E be its set of limit points. Show that $E = \{x\}$ for some $x \in \mathbb{R}$ if and only if $x_n \to x$.
- 4. Let $\{z_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers. Then show that

$$\liminf_{n \to \infty} \frac{z_{n+1}}{z_n} \le \liminf_{n \to \infty} \sqrt[n]{z_n} \le \limsup_{n \to \infty} \sqrt[n]{z_n} \le \limsup_{n \to \infty} \frac{z_{n+1}}{z_n}$$

- 5. Suppose $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$, and $\{z_n\}_{n=1}^{\infty}$ are sequences of real numbers such that $x_n \leq z_n \leq y_n$ and the series $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} y_n$ both converge. Does it always imply that $\sum_{n=1}^{\infty} z_n$ converges ?
- 6. Let $a, b, c \in \mathbb{R}$. Suppose $\{x_n\}_{n=1}^{\infty}$ is a sequence of real numbers such that

$$x_n = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}, \quad \forall n \in \mathbb{N}$$

Decide whether the series $\sum_{n=1}^{\infty} x_n$ converges or not.

- 7. Suppose {z_n}[∞]_{n=1} is a sequence of real numbers. Decide whether the series ∑[∞]_{n=1} z_n converges or not in each of the following cases:
 (i) z_n = √n/(2n³-1), (ii) z_n = (n/(2n+1)ⁿ), (iii) z_n = n²-n+1/(n³+1).
- 8. Let $C_1, C_2 \in \mathbb{R} \setminus \{0\}$ and $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}$ and $\{z_n\}_{n=1}^{\infty}$ be sequences of real numbers. Suppose the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ both converge. Show that:
 - (a) If $z_n = C_1 x_n + C_2 y_n$ then $\sum_{n=1}^{\infty} z_n$ also converges.
 - (b) If $0 \le z_n \le C_1 x_n$ then $\sum_{n=1}^{\infty} z_n$ also converges.