Due: Tuesday, August 22nd, 2006

Problems to be turned in: 4, 8, 12

- 1. If x > -1 then $(1+x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.
- 2. Let $x \in \mathbb{R}$, $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Show that the following are equivalent:
 - (a) $\forall \epsilon > 0$, there is an $N \equiv N_{\epsilon} \in \mathbb{N}$ such that $|x_n x| < \epsilon$ for all $n \geq N$.
 - (b) Let C > 0, $\forall \epsilon > 0$, there is an $M \equiv M_{\epsilon} \in \mathbb{N}$ such that $|x_n x| \leq C\epsilon$ for all n > M.
- 3. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers \mathbb{R} and suppose that $x_n \to x$.
 - (a) Let $m, n \in \mathbb{N}$, show that $x_{m+n} \to x$ as $m \to \infty$.
 - (b) Let $m, l \in \mathbb{N}$, $p : \mathbb{R} \to \mathbb{R}$ such that $p(x) = \sum_{k=0}^{l} p_k x^k$, and $q : \mathbb{R} \to \mathbb{R} \setminus \{0\}$, $q(x) = \sum_{k=0}^{m} q_k x^k$, with $p_k \in \mathbb{R}$, $q_k \in \mathbb{R}$ for k = 1, 2, ..., n. Show that if $r : \mathbb{R} \to \mathbb{R}$ defined by $r(x) = \frac{p(x)}{q(x)}$ then $r(x_n) \to r(x)$.
 - (c) Show that $\{|x_n|\}_{n=1}^{\infty}$ also converges
- 4. Find: (i) $\lim_{n\to\infty} \frac{2^n}{n!}$, (ii) $\lim_{n\to\infty} \sqrt{n^2-n} n$ and, (iii) $\lim_{n\to\infty} a_n$, where $b\in(0,1)$ and $a_n=nb^n, n\in\mathbb{N}$.
- 5. Let $\alpha \in \mathbb{R}, p > 0$. Consider $\{x_n\}_{n=1}^{\infty}$, such that $x_n = \frac{n^{\alpha}}{(1+p)^n}$ for $n \in \mathbb{N}$. Decide if $\{x_n\}_{n=1}^{\infty}$ converges or not.
- 6. Consider the $\{y_n\}_{n=1}^{\infty}$, such that $y_1 > 1$ and $y_{n+1} := 2 \frac{1}{y_n}$ for $n \ge 2$. Show that y_n converges.
- 7. Consider $\{x_n\}_{n=1}^{\infty}$, such that $x_n = \left(1 + \frac{1}{n}\right)^n$, for all $n \in \mathbb{N}$. Show that x_n is a monotonically increasing sequence and it converges to $x \in \mathbb{R}$.
- 8. Let a>0 and choose $s_1>\sqrt{a}$. Define $s_{n+1}:=\frac{1}{2}(s_n+\frac{a}{s_n})$ for $n\in\mathbb{N}$.
 - (a) Show that s_n is monotonically decreasing and $\lim_{n\to} s_n = \sqrt{a}$.
 - (b) If $z_n = s_n \sqrt{a}$ then show that $z_{n+1} < \frac{z_n^2}{2\sqrt{a}}$.
 - (c) Justify the statement: "this is a good algorithm for calculating square roots".
- 9. Let $\{z_n\}_{n=1}^{\infty}$ be a sequence of real numbers such that $L:=\lim_{n\to\infty}\frac{z_{n+1}}{z_n}$ exists. If L<1, then $z_n\to 0$. What happens if L>1?
- 10. Suppose $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are such that for every $\epsilon > 0$ there is an M such that $|x_n y_n| < \epsilon$ for all $n \ge M$. If $x_n \to x$ then does it imply that y_n converges.
- 11. Let $0 \le r < 1$ and $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers such that $x_n = \sum_{k=1}^n r^k$ for all $n \in \mathbb{N}$. Show that x_n is a convergent sequence.
- 12. Let A be a bounded non-empty subset of \mathbb{R} . Let $s = \sup(A)$ and $i = \inf(A)$. Show that there are sequences $\{x_n\}_{n=1}^{\infty}$, $\{z_n\}_{n=1}^{\infty}$ in A such that $x_n \to s$ and $z_n \to i$ as $n \to \infty$.
- 13. Give Examples of the following:
 - (a) a bounded sequence $\{z_n\}_{n=1}^{\infty}$ that does not converge.
 - (b) sequences $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ that do not converge but their sum converges
 - (c) sequences $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ that do not converge but their product converges.