Due: Tuesday, August 8th, 2006

Problems to be turned in: 5,7,9.

- 1. Let $f: \mathbb{R} \to \mathbb{R}$. be defined by $f(x) = x^2$. Then
 - (a) Find f(E), where $E = \{x \in \mathbb{R} : 0 \le x \le 2\}$.
 - (b) If G := f(E), then find $f^{-1}(G)$ and $f(f^{-1}(G))$. (Observe that $f(f^{-1}(G)) = G$ but $f^{-1}(f(E)) \neq E$.)
- 2. Let $f:A\to B$. Let G be subset of B and $H\subset A$. Show that

$$f(f^{-1}(G)) \subset G, f^{-1}(f(H)) \supset H.$$

- 3. If $f:A\to B$ is injective and $g:B\to C$ is injective, then the composition $g\circ f:A\to C$ is injective.
- 4. If $a, b \in \mathbb{R}$ and a < b, then show that $a < \frac{a+b}{2} < b$.
- 5. If $a \in \mathbb{R}$ such that $0 \le a < \epsilon$ for every $\epsilon > 0$, then show that a = 0.
- 6. Let $S \subset \mathbb{R}$, be bounded above. Show that $u = \sup(S)$ if and only if for every $\epsilon > 0$ there is a $s \equiv s_{\epsilon} \in S$ such that $u \epsilon < s_{\epsilon}$.
- 7. Let A and B be bounded nonempty subsets of \mathbb{R} , and let $A + B := \{a + b : a \in A, b \in B\}$. Prove that $\sup(A + B) = \sup(A) + \sup(B)$ and $\inf(A + B) = \inf(A) + \inf(B)$.
- 8. Suppose $I_n = (0, \frac{1}{n})$ then show that $\bigcap_{n=1}^{\infty} I_n = \emptyset$.
- 9. Show that the set \mathbb{Z} of integers is countable.
- 10. Let $y \in \mathbb{R}, x \in [0,1]$. Show that there is a sequence $\{b_n : n \in \mathbb{N}\}$, such that $0 \le b_n \le 9$ and

$$\frac{b_1}{10} + \frac{b_2}{10^2} + \dots + \frac{b_n}{10^n} \le x \le \frac{b_1}{10} + \frac{b_2}{10^2} + \dots + \frac{b_n}{10^n} + \frac{1}{10^{n+1}},\tag{1}$$

for all $n \in \mathbb{N}$. Conversely given a sequence $\{b_n : n \in \mathbb{N}\}$ such that $0 \le b_n \le 9$ there is a unique $x \in [0, 1]$ satisfying (1) for all $n \in \mathbb{N}$.

We shall then write $x := .b_1b_2b_3...$ and call this as a decimal expansion for x. For any $y \in \mathbb{R}$ we shall refer to $y := N.b_1b_2b_3...$ as a decimal representation for y, where y = N + x and $N \in \mathbb{N} \in [0,1]$. Is the above decimal representation unique for every x?

11. Using the previous problem can you provide another definition of rational numbers $\mathbb{Q} \subset \mathbb{R}$ and a proof for the fact that \mathbb{R} is uncountable?