Due: Tuesday, August 1st, 2006

Problems to be turned in: 5,7.

In this assignment: \mathbb{N} will denote natural numbers, \mathbb{Q} will denote rational numbers, \mathbb{R} will denote real numbers and \mathbb{C} will denote complex numbers.

1. Show that if $0 < a < b \in \mathbb{R}$, $n \in \mathbb{N}$ then

$$b^n - a^n < (b - a)nb^{n-1}$$

- 2. Let $n \in \mathbb{N}$. Prove that $n^3 + 2n$ is always a multiple of 3.
- 3. For $x > 0, n \in \mathbb{N}$, let $A = \{t \in \mathbb{R} : t > 0, t^n < x\}$. Let $y = \sup(A)$. Show that $y^n > x$ is not possible.
- 4. (*Rudin: page 21*)Let r and x be real numbers. If r is rational $(r \neq 0)$ and x is irrational, prove that r + x and rx are irrational
- 5. (*Rudin: page 22*) Let A be a non-empty set of real numbers which is bounded below. Let $-A := \{x \in \mathbb{R} : -x \in A\}$. Show that $\inf A = -\sup(-A)$.
- 6. (*From Rudin: page 22*) Show that the set of all complex numbers C defined in class is a Field. Decide whether this field can be: (a) ordered set and/or (b) ordered field.
- 7. (Rudin: page 22) If $z, w, z_i \in \mathbb{C}$ for i = 1, 2, ..., n then show that

$$|z_1 + z_2 + \ldots + z_n| \le |z_1| + |z_2| + \ldots + |z_n|$$

and

$$||z| - |w|| \le |z - y|.$$

8. (*From Rudin: page 22*) Decide when does the equality hold in Cauchy-Schwarz-Bunyakovski inequality ?

Errata:

- 1. The set $B = \{p \in \mathbb{Q} : p^2 > 2\}$ was defined. It was supposed to be $B = \{p \in \mathbb{Q} : p > 0, p^2 > 2\}$. The proof indicated in class for showing that there is no smallest element in B will work. Note that in the first definition, the fact that there is no smallest element is trivial.
- 2. In Rudin Third edition: Theorem 1.21: should read as follows:
 "For every real x > 0 and every integer n > 0 there is one and only one positive real y such that yⁿ = x"
 In Rudin the word positive is missing. Note that there are readily available counter examples for this.