Due: Tuesday, August 1st, 2006

Problems to be turned in: 5,7.

In this assignment: \mathbb{N} will denote natural numbers, \mathbb{Q} will denote rational numbers, \mathbb{R} will denote real numbers and \mathbb{C} will denote complex numbers.

1. Show that if $0<a<b \in \mathbb{R}, n \in \mathbb{N}$ then

$$
b^{n}-a^{n}<(b-a) n b^{n-1} .
$$

2. Let $n \in \mathbb{N}$. Prove that $n^{3}+2 n$ is always a multiple of 3 .
3. For $x>0, n \in \mathbb{N}$, let $A=\left\{t \in \mathbb{R}: t>0, t^{n}<x\right\}$. Let $y=\sup (A)$. Show that $y^{n}>x$ is not possible.
4. (Rudin: page 21)Let r and x be real numbers. If r is rational $(r \neq 0)$ and x is irrational, prove that $r+x$ and $r x$ are irrational
5. (Rudin: page 22) Let A be a non-empty set of real numbers which is bounded below. Let $-A:=\{x \in \mathbb{R}:-x \in A\}$. Show that $\inf A=-\sup (-A)$.
6. (From Rudin: page 22) Show that the set of all complex numbers \mathbb{C} defined in class is a Field. Decide whether this field can be: (a) ordered set and/or (b) ordered field.
7. (Rudin: page 22) If $z, w, z_{i} \in \mathbb{C}$ for $i=1,2, \ldots, n$ then show that

$$
\left|z_{1}+z_{2}+\ldots+z_{n}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\ldots+\left|z_{n}\right|
$$

and

$$
||z|-|w|| \leq|z-y|
$$

8. (From Rudin: page 22) Decide when does the equality hold in Cauchy-Schwarz-Bunyakovski inequality?

Errata:

1. The set $B=\left\{p \in \mathbb{Q}: p^{2}>2\right\}$ was defined. It was supposed to be $B=\{p \in \mathbb{Q}: p>$ $\left.0, p^{2}>2\right\}$. The proof indicated in class for showing that there is no smallest element in B will work. Note that in the first definition, the fact that there is no smallest element is trivial.
2. In Rudin Third edition: Theorem 1.21: should read as follows:
"For every real $x>0$ and every integer $n>0$ there is one and only one positive real y such that $y^{n}=x$ "
In Rudin the word positive is missing. Note that there are readily available counter examples for this.
