Not Due

1. Let $-\infty \leq a<b \leq \infty$ and $f:(a, b) \rightarrow \mathbb{R}$ be a differentiable function.
(a) If $c \in(a, b)$ is a local maximum of f (i.e. there is a $\delta>0$ such that $f(x) \leq f(c)$ whenever $|x-c|<\delta$ and $x \in(a, b)$.) then $f^{\prime}(c)=0$.
(b) f is increasing on (a, b) if and only if $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$.
(c) Suppose $f^{\prime}(c)=0$ for all $c \in(a, b)$. From first principles, show that f is a constant function.
(d) Can you construct a $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(0) \neq 0$ but f is not monotonic in any neighbourhood of 0 ?
2. Let $A \in \mathbb{R}$ and $-\infty \leq a<b \leq \infty$. Let f, g be differentiable on (a, b) such that $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Suppose that

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=A \text { and } \lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x)
$$

(a) Deduce first that $g(x) \neq g(y)$ for all $a<x<y<b$.
(b) Let $\epsilon>0$ be given. Use the generalised mean value theorem to conclude that there is a $\delta>0$ such that

$$
L-\epsilon<\frac{f(x)-f(y)}{g(x)-g(y)}<L+\epsilon,
$$

for all $a<x<y<a+\delta<b$.
(c) Show that

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=A .
$$

(d) Show that (c) holds if $A \in\{\infty,-\infty\}$.
(e) Suppose $\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x)$ is replaced by $\lim _{x \rightarrow a} g(x)=\infty$ show that (c) holds as well.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$. Show that f is differentiable at c if and only if there is a continuous function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)=f(c)+\phi(x)(x-c)
$$

4. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be differentiable on I. Then f is increasing (decreasing) if and only if $f^{\prime}(x) \geq 0\left(f^{\prime}(x) \leq 0\right)$ for all $x \in I$.
5. (Darboux's Theorem) If f is differentiable on $I=[a, b]$ and if k is a number between $f^{\prime}(a)$ and $f^{\prime}(b)$, then there is at least one point $c \in(a, b)$ such that $f^{\prime}(c)=k$. Can you say something about the discontinuities of f^{\prime} ?. (Hint: consider $g(x)=x k-f(x)$)
6. (Bartle and Sherbert page 192) Let $I \subset \mathbb{R}$ be an open interval and $f: I \rightarrow \mathbb{R}$ be differentiable on I. Suppose $f^{\prime \prime}(a)$ exists at $a \in I$. Show that

$$
f^{\prime \prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-2 f(a)+f(a-h)}{h^{2}}
$$

7. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f(x)=x^{2}+2 x+3$ then find its Taylor polynomial of degree n for all $n \in \mathbb{N}$ at $x_{0}=0$ and $x_{0}=1$.
8. Consider the convergent series $\sum_{n=1}^{\infty} c_{n}$. Show that $f(x)=\sum_{n=1}^{\infty} c_{n} x^{n}$ is well defined on $(-1,1]$ and decide whether it is continuous on $(-1,1]$.
9. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. Suppose $\lim \sup _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=$ y. Show that $\lim \sup _{n \rightarrow \infty} x_{n} y_{n}=x y$
10. Suppose $f:(-R, R) \rightarrow \mathbb{R}$ and $f(x)=\sum_{n=1}^{\infty} c_{n} x^{n}$ with $\lim \sup _{n \rightarrow \infty}\left|c_{n}\right|^{\frac{1}{n}}=\frac{1}{R}$. Then can you find the its Taylor series at $a \in \mathbb{R}$ (i.e. it exists and $f^{n}(a)$ interms of c_{n}) and also its radius of convergence. (You may not be able to prove the result rigorously, given the theorems done in class.)
11. Find the Taylor Polyonmial of degree n of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ at $x_{0}=0$:
(a) $f(x)=\ln (x)$ and (b) $f(x)=\cos (x)$.
12. Using Taylor's Theorem, find good rational bounds for $\sqrt{3}$.
