Due: Tuesday, 14th November, 2006

1. Let $I=(a, b), a, b \in \mathbb{R}$ be an open interval. let $f: I \rightarrow \mathbb{R}$ be a continuous monotonically (strictly) increasing function. Show that $f(I)$ is also an open interval.
2. (Rudin Exercise 6, chapter 1). Fix $b>1$.
(a) If m, n, p, q are integers, $n>0, q>0$, and $r=\frac{m}{n}=\frac{p}{q}$ prove that $\left(b^{m}\right)^{\frac{1}{n}}=\left(b^{p}\right)^{\frac{1}{q}}$. (Thereby we can define $b^{r}=\left(b^{m}\right)^{\frac{1}{n}}$.)
(b) Prove that $b^{r+s}=b^{r} b^{s}$ if $r, s \in \mathbb{Q}$.
(c) If $x \in \mathbb{R}$, define $B(x)=\left\{b^{p}: p \in \mathbb{Q}, p \leq x\right\}$ Prove that $b^{r}=\sup B(r)$ if $r \in \mathbb{Q}$. (Thereby it makes sense to define $b^{x}=\sup B(x)$ for $\left.x \in \mathbb{R}\right)$
(d) Prove that $b^{x+y}=b^{x} b^{y}$ for all $x, y \in \mathbb{R}$.
(e) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ and $g(x)=b^{x}$. Show that g is continuous.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Show that f is continuous at 0 and LHD (left hand derivative) and RHD(Right hand derivative) of f do not exist at 0 .
4. Let $E: \mathbb{R} \rightarrow \mathbb{R}$ be such that $E(x)=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$. Show that E is differentiable and $E^{\prime}(x)=E(x)$
5. Let $f, g: E \rightarrow \mathbb{R}$ Suppose x is a limit point of E. Suppose

$$
\lim _{y \rightarrow x} f(y)=A, \lim _{y \rightarrow x} g(y)=B
$$

with $A, B \in \mathbb{R} \cup\{\infty,-\infty\}$. Then
(a) $\lim _{t \rightarrow x} f(t)=C$ implies $C=A$.
(b) $\lim _{t \rightarrow x} f+g(t)=A+B$
(c) $\lim _{t \rightarrow x} f g(t)=A B$
(d) $\lim _{t \rightarrow x} \frac{f}{g}(t)=\frac{A}{B}$,
provided all the operations are well-defined. (i.e no division by 0 or $\infty-\infty$ or $0 \cdot \infty$ or $\frac{\infty}{\infty}$)
6. (Rudin Page 114 1.) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and suppose that

$$
|f(x)-f(y)| \leq(x-y)^{2}
$$

Show that f is a constant function.
7. (Bartle and Sherbert: page 167) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f(x)=x^{\frac{1}{3}}$. Show that f is not differentiable at $x=0$.
8. (Bartle and Sherbert: page 167) Decide whether $h: \mathbb{R} \rightarrow \mathbb{R}$ and $h(x)=x|x|$ is differentiable or not.

