Due: Tuesday, July 25th, 2006

Problem to be turned in: 3.

- 1. If $p \in \mathbb{Q}$, $p \neq -2$, then $\frac{2p+2}{p+2} \in \mathbb{Q}$.
- 2. Show that there does not exist $p \in \mathbb{Q}$ such that $p^2 = 12$.
- 3. Let $A=\{p\in\mathbb{Q}:p^2<2\}.$ Show that A is bounded above but does not have a least upper bound.

Extra Credit: Define the set of natural numbers \mathbb{N} (providing an axiomatic construction). Given \mathbb{N} , define (and construct) \mathbb{Q} .