Problems to be turned in: 1 Due: 25th, October 2008

- 1. Show that $(L^{\infty}(\Omega, \mathcal{B}, \mu), || \cdot ||_{\infty})$ is a complete normed vector space.
- 2. Let $(\Omega, \mathcal{B}, \mu)$ be a finite measure space. If $1 \leq s \leq r \leq \infty$, then $L^r(\Omega, \mathcal{B}, \mu) \subset L^s(\Omega, \mathcal{B}, \mu)$; in fact, we have

$$||\phi||_s \le (\mu(\Omega))^{\frac{1}{s} - \frac{1}{r}} ||\phi||_r \ \forall \ \phi$$

3. Let $-\infty \leq a < b\infty$. A function $\phi : (a, b) \to \mathbb{R}$ is said to be convex if

$$\phi((1-\lambda)x + \lambda y) \le (1-\lambda)\phi(x) + \lambda\phi(y)$$

for all a < x, y < b and $0 \le \lambda \le 1$.

- (a) Show that ϕ is continuous.
- (b) Show that $\frac{\phi(t) \phi(s)}{t s} \le \frac{\phi(u) \phi(t)}{u t}$ whenever a < s < t < u < b.
- (c) Let (Ω, \mathcal{B}, P) be a probability space. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a convex function. If $X : \Omega \to \mathbb{R}$ is integrable then show that

$$\phi(\int XdP) \le \int (\phi(X))dP.$$

(*Hint*: Set $t = \int X dp$, $s = X(\omega)$ and use the above step)