Due: October 15th, 2008

1. Extend the notion of product measure to $\prod_{i=1}^{n}\left(\Omega_{i}, \mathcal{B}_{i}, \mu_{i}\right)$.
2. Let $\mathcal{C}=\left\{A: A \subset \mathbb{R}\right.$ and A is countable or A^{c} is countable $\}$. Show that \mathcal{C} is a σ algebra and that $D=\{(x, x): x \in \mathbb{R}\}$ does not belong to $C \otimes C$ although all its sections D^{x} and D_{y} belong to \mathcal{C}.
3. We constructed the product measure for finite measure spaces in class. Deduce from this that the product measure for σ finite measure spaces also exist.
4. Show that if f is integrable on $(\Omega, \mathcal{B}, \mu)$, then

$$
\lim _{\mu(B) \rightarrow 0} \int_{B} f d \mu=0
$$

(i.e given any $\epsilon>0$, there is $\delta>0$ such that if $B \in \mathcal{B}$ and $\mu(B)<\delta$, then $\left.\left|\int_{B} f d \mu\right|<\epsilon\right)$.
5. Following the notation in class, show that the sets $E_{+}^{-}, E_{-}^{-}, E_{+}^{+}$have lebesgue measure zero.
6. Show that if $f \in L^{1}([a, b], \lambda)$, then $F(x)=\int_{a}^{x} f(y) d y$ is an absolutely continuous function.
7. Let C be the Cantor set.
(a) Show that if $x \in C$ then $x=\sum_{j=1}^{\infty} \frac{a_{j}}{3 j}$ where $a_{j}=0$ or $a_{j}=2$ for all j.
(b) Define a function $f: C \rightarrow[0,1]$ as follows:

$$
f(x)=\sum_{j=1}^{\infty} \frac{b_{j}}{2^{j}},
$$

where $x=\sum_{j=1}^{\infty} \frac{a_{j}}{3^{j}}$ and $b_{j}=\frac{a_{j}}{2}$.
i. Show that f maps C onto $[0,1]$.
ii. If $x, y \in C, x<y$, and x, y are not the end points of one of the intervals removed from $[0,1]$ to obtain C, then $f(x)<f(y)$.
iii. If $x, y \in C, x<y$, and x, y are end points of one of the intervals removed from $[0,1]$ to obtain C, then show that $f(x)=f(y)=\frac{p}{2^{k}}$ for some $p, k \in \mathbb{N}$ and p not divisible by 3 . (Hint: If x is an end point of one of the intervals removed to obtain C, then $x=\frac{p}{3^{k}}$ for some $p, k \in \mathbb{N}$ and p not divisible by 3. Use (1) and 2(a) to obtain the result.)
iv. Extend f to a map from $[0,1]$ onto itself by defining its value on each interval missing from C to be its value at the end points. Show that f is continuous but not absolutely continuous (Hint: $f^{\prime}=0$ a.e.).

