Due: October, 1st 2008

Problems to be turned in: 2,4

1. Let $\{A_1, \dots, A_n\}$ be subsets of any set Ω . For $\epsilon = (\epsilon_1, \dots, \epsilon_n) \in \{0, 1\}^n$, define

$$A(\epsilon) = \cap_{i=1}^n A_i^{(\epsilon_i)}, \text{ where we write } B^{(i)} = \left\{ \begin{array}{ll} B & if \ i=1 \\ B^c & if \ i=0 \end{array} \right.$$

Show that

- (a) $\Omega = \coprod_{\epsilon \in \{0,1\}^n} A(\epsilon);$
- (b) $A_i = \bigcup \{A(\epsilon) : \epsilon(i) = 1\};$
- (c) $\{\epsilon: A(\epsilon) \neq \emptyset\}$ is the collection of 'atoms' (= minimal non-empty elements) of $\mathcal{A}(\{A_1, \cdots, A_n\})$; and
- (d) If $|\{\epsilon : A(\epsilon) \neq \emptyset\}| = k$, then $\mathcal{A}(\{A_1, \dots, A_n\})$ has 2^k elements.
- 2. Let $\{f, f_n : n \geq 1\}$ be \mathbb{R} -valued measurable functions on $(\Omega, \mathcal{A}, \mu)$. Suppose $f_n \uparrow f$ and that there exists $(\mathcal{A}, \mathcal{B}_{\mathbb{R}})$ measurable function such that $\int h_- d\mu < \infty$ and $f_n \geq h$ for all $n \geq 1$. Then show that $\int f_n d\mu \uparrow \int f d\mu$.
- 3. Let $\Omega = \Omega_1 \times \Omega_2$; call a set of the form $A_1 \times A_2 \subseteq \Omega$, $A_i \subseteq \Omega_i$, a rectangle, and call such a rectangular measurable if $A_i \in \mathcal{B}_i$, i = 1, 2.
 - (a) Show that $\mathcal{A}(\mathcal{R})$, the algebra generated by the measurable rectangles, is precisely the collection of sets of the form $\coprod_{i=1}^{n} R_i, R_i \in \mathcal{R}$.
 - (b) Suppose for all $E \subset \Omega_1 \times \Omega_2$, $x \in \Omega_1$. Let $E^x = \{y \in \Omega_2 : (x,y) \in E\}$. Then show that for any sequence of disjoint sets $\{E_n\}_{n=1}^{\infty}$ in Ω , $(\bigcup_{n=1}^{\infty} E_n)^x = \bigcup_{n=1}^{\infty} E_n^x$
- 4. Let $\Omega_1 = \Omega_2 = \mathbb{N}$, $\mathcal{B}_1 = \mathcal{B}_2 = \mathcal{P}(\mathbb{N})$. Define the measures μ_i on $(\Omega_i, \mathcal{B}_i)$ by $\mu_i(\{k\}) = 2^{-k}$. Define $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ by

$$f(m,n) = \begin{cases} -n2^{2n} & \text{if } m = n\\ n2^{2n} & \text{if } m = n - 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Show that f is $\mathcal{B}_1 \otimes \mathcal{B}_2$ measurable.
- (b) Observe that

$$\int_{\Omega_2} \int_{\Omega_1} f(m,n) d\mu_1(m) d\mu_2(n) \neq \int_{\Omega_1} \int_{\Omega_2} f(m,n) d\mu_2(n) d\mu_1(m),$$

thereby emphasising the importance of integrability in the hypotheses of Fubini's theorem.

5. Suppose $(\Omega, \mathcal{B}, \mu)$ is a σ -finite measure space and $f: \Omega \to \mathbb{R}$ is a non-negative $((\mathcal{B}, \mathcal{B}_{\mathbb{R}})-)$ measurable function. Define $\mathcal{G} = \{(w, t) \in \Omega \times \mathbb{R} : 0 \le t \le f(w)\}$. Show that $\mathcal{G} \in \mathcal{B} \otimes \mathcal{B}_{\mathbb{R}}$, and that $(\mu \times m)(\mathcal{G}) = \int f d\mu$, where m denotes Lebesgue measure on \mathbb{R} .