Due: September 1, 2008

Problems to be turned in: 1,2,3,7

- 1. If $T: X \to X'$ is a continuous map between topological spaces, then T is $(\mathcal{B}_X, \mathcal{B}_{X'})$ measurable, where we write \mathcal{B}_X to denote the σ -algebra generated by all open sets in X.
- 2. If \mathcal{B}_i is a σ -algebra of subsets of a set X_i , and if $f_i: X \to X_i$ are functions, for each $i \in I$ where I is some index set show that there is a smallest σ -algebra \mathcal{B} of subsets of X such that f_i is $(\mathcal{B}, \mathcal{B}_i)$ -measurable for each $i \in I$. If we denote this σ -algebra \mathcal{B} by $\sigma(\{f_i: i \in I\})$, show that

$$\sigma(\lbrace f_i : i \in I \rbrace) = \sigma(\lbrace f_i^{(-1)}(U_i) : U_i \in \mathcal{S}_i \forall i \in I \rbrace) ,$$

for any family $\{S_i : i \in I\}$ such that $\sigma(S_i) = B_i \ \forall i$.

- 3. If $X = \prod_{i \in I} X_i$, where (X_i, \mathcal{U}_i) are topological spaces, if X is endowed with the product topology \mathcal{U} , verify that $\mathcal{B}_X = \sigma(\{\pi_i : i \in I\})$, where $\pi_i : X \to X_i$ is the natural projection map.
- 4. Let $f: \Omega \to \mathbb{R}^n$ be a function. Then there exist unique functions $f_i: \Omega \to \mathbb{R}, 1 \leq i \leq n$, such that $f(w) = (f_1(w), f_2(w), \dots, f_n(w)) \ \forall w \in \Omega$.
- 5. If $S = \{\prod_{i=1}^n (a_i, b_i) : -\infty < a_i < b_i < \infty \quad \forall i\}$ is the set of open rectangular boxes in \mathbb{R}^n , show that $\mathcal{B}_{\mathbb{R}^n} = \sigma(S)$.
- 6. If (Ω, \mathcal{B}) is a measurable space, and if f, f_1, \ldots, f_n are as in (1) above, show that f is $(\mathcal{B}, \mathcal{B}_{\mathbb{R}^n})$ measurable if and only if f_i is $(\mathcal{B}, \mathcal{B}_{\mathbb{R}})$ -measurable for each $i = 1, 2, \ldots, n$.
- 7. If $f, f_2 : \Omega \to \mathbb{R}$ are measurable, then show that each of the following functions (from Ω to \mathbb{R}) is measurable:
 - (a) $f_1 \vee f_2 = \max\{f_1, f_2\};$
 - (b) $f_1 \wedge f_2 = \min\{f_1, f_2\}$
- 8. Make precise the notion of measurability for an extended real-valued function i.e. a function which takes values in $\bar{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$.