Due: August 25th, 2008

Problems to be turned in: 2,4,5,6

- 1. Let \mathcal{S} denote the collection of intervals of the form (a,b], where $-\infty \leq a < b \leq \infty$ (where of course $(a,\infty]$ is to be interpreted as (a,∞)). Let \mathcal{A} denote the algebra $\mathcal{A}(\mathcal{S})$. Let \mathbb{Q} denote the set of rational numbers in \mathbb{R} , and let $\mathcal{A}_0 = \mathcal{A} \cap \mathbb{Q}$. Consider the measure μ defined on \mathcal{A}_0 by $\mu(A) = 0$ or ∞ according as $A = \emptyset$ or $A \neq \emptyset$. Show that there exist more than one measure on $\sigma(\mathcal{A}_0)$ (in \mathbb{Q}) which agree with μ on \mathcal{A}_0 .
- 2. Suppose $(\Omega, \mathcal{B}, \mu)$ is a finite measure space, and suppose \mathcal{A} is an algebra of subsets of Ω such that $\mathcal{B} = \sigma(\mathcal{A})$. Show that if $B \in \mathcal{B}$, and if $\varepsilon > 0$, then there exists $A \in \mathcal{A}$ such that $\mu(A\Delta B) < \varepsilon$, where $A\Delta B = (A B) \cup (B A)$. (Hint: Show that the collection of sets B in \mathcal{B} for which the desired conclusion holds is a monotone class containing \mathcal{A} .)
- 3. Let $(\Omega, \mathcal{B}, \mu)$ be a σ -finite measure space, let \mathcal{A} be any algebra of subsets of Ω such that $\mathcal{B} = \sigma(\mathcal{A})$, and let $\mu_0 = \mu | \mathcal{A}$.
 - (i) Show that $\mu_0^* = \mu^*$ (as functions on 2^{Ω}) and that in fact

$$\mu_0^*(E) = \mu^*(E) = \inf\{\mu(B) : B \in \mathcal{B}, E \subseteq B\}$$

for all subsets E of Ω .

- (ii) If $N \subseteq \Omega$ and $\mu^*(N) = 0$, show that $N \in \mathcal{M}(\mu)$; we say that $(\Omega, \mathcal{M}(\mu), \mu^*)$ is a 'complete' measure space meaning that if $N \subseteq M, M \in \mathcal{M}(\mu)$ and $\mu^*(M) = 0$, then $N \in \mathcal{M}(\mu)$; i.e., $\mathcal{M}(\mu)$ contains all μ^* null sets.
- (iii) Show that $E \in \mathcal{M}(\mu)$ if and only if there exist $B_0, B_1 \in \mathcal{B}$ such that $B_0 \subseteq E \subseteq B_1$ and $\mu(B_1 B_0) = 0$. (Hint: First assume $\mu(\Omega) < \infty$; the general case easily follows from this by the assumed σ -finiteness. Use (i) to lay hands on B_1 . Define B_0 to be the complement of the B_1 you would have got for E'.)
- (iv) Make precise the statement that $(\Omega, \mathcal{M}(\mu), \mu^*)$ is 'the completion of $(\Omega, \mathcal{B}, \mu)$.'
- 4. (a) Let $\mathcal{L} = \mathcal{M}(\mu)$ denote the σ -algebra of μ^* measurable sets (Members of \mathcal{L} are called **Lebesgue measurable** sets.) Then, show that : $L \in \mathcal{L}, x \in \mathbb{R} \Rightarrow L + x \in \mathcal{L}$ and that $\mu^*(L + x) = \mu^*(L)$. (Hence μ^* is a translation invariant measure defined on \mathcal{L} .)
 - (b) Let I = (0, 1], and for $x, y \in I$ say $x \sim y$ if x y is a rational number. For $x, y \in (0, 1]$, define $x \stackrel{\circ}{+} y$ to be the unique element of (0, 1] such that $(x + y) (x \stackrel{\circ}{+} y)$ is an integer.
 - (i) Show that \sim is an equivalence relation on I, and that if $x, y \in (0, 1]$, then $x \sim y$ if and only if there exists a rational number $r \in (0, 1]$ such that x = y + r.
 - (ii) If [x] denotes the equivalence class of an element x of I so $[x] = \{y \in I : x \sim y\}$ let E be a set obtained by picking one element from each distinct equivalence class. Let $\{r_n\}_{n=1}^{\infty}$ be an enumeration of the rational numbers in (0,1], and define

$$E_n = E \stackrel{\circ}{+} r_n = \{x \stackrel{\circ}{+} r_n : x \in E\}.$$

Show that $(0,1] = \coprod_{n=1}^{\infty} E_n$; also show that if $E \in \mathcal{L}$, then $E_n \in \mathcal{L}$ and $\mu^*(E_n) = \mu^*(E)$ for all n; deduce that $E \notin \mathcal{L}$.

5. Let I=[0,1]. Let $I_1=I_{11}=(\frac{1}{3},\frac{2}{3})$ be the open middle third interval of I. Next, let $I_{21}=(\frac{1}{9},\frac{2}{9})$ and $I_{22}=(\frac{7}{9},\frac{8}{9})$ be the two open middle third intervals of $I-I_1$. Let $I_2=I_{21}\cup I_{22}$. For $j\geq 3$ and $k=1,2,3\ldots,2^{j-1}$, let I_{jk} be the open middle third intervals of $I-\bigcup_{k=1}^{j-1}I_k$ and let $I_j=\bigcup_{k=1}^{2^{j-1}}I_{jk}$. Finally, let $C=I-\bigcup_{j=1}^{\infty}I_j$. C is called the **Cantor set**.

- (a) Show that C is compact and uncountable.
- (b) Show that $\lambda(C) = 0$, where λ is lebesgue measure on [0, 1].
- 6. (a) If μ is a probability measure defined on the Borel σ algebra \mathcal{B} of \mathbb{R} , define $F: \mathbb{R} \to [0,1]$ by $F(x) = \mu((-\infty, x])$, and verify that
 - (i) F is monotonically non-decreasing i.e. $x \leq y \Rightarrow F(x) \leq F(y)$ and right continuous i.e., $\lim_{y \downarrow x} F(y) = F(x)$;
 - (ii) F is discontinuous at x if and only if $\mu(\lbrace x \rbrace) > 0$; and
 - (iii) $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$.

The function F is referred to as the **distribution function** of μ .

- (b) Conversely, if $F: \mathbb{R} \to [0,1]$ is a function satisfying (i) and (iii) above, (imitate the construction of Lebesgue measure to) show that there exists a unique probability measure μ on \mathbb{R} such that $\mu((-\infty, x]) = F(x)$ for all x in \mathbb{R} .
- (c) Generalise (a) and (b) above to the case of σ -finite (rather than just probability) measures.