Problems to be turned in: 1, 4, 6, 12, 13, 15
Due: 18th August, 2008

1. If $\Omega \in \mathcal{A}$ and if $A, B \in \mathcal{A}$ implies that $A \cap B^{c} \in \mathcal{A}$, then show that \mathcal{A} is an algebra.
2. If \mathcal{A} is an algebra of sets in Ω, and if $\left\{E_{n}\right\}_{n=1}^{\infty} \subseteq \mathcal{A}$, then there exist sequences $\left\{S_{n}\right\}_{n=1}^{\infty},\left\{D_{n}\right\}_{n=1}^{\infty}$ of sets in \mathcal{A} such that:
(i) $S_{1} \subset S_{2} \subset S_{3} \subset \ldots \ldots .$. ;
(ii) $D_{n} \cap D_{m}=\emptyset$ if $n \neq m$; and
(iii) $\cup_{k=1}^{n} E_{k}=\cup_{k=1}^{n} S_{k}=\cup_{k=1}^{n} D_{k}$, for $n=1,2, \ldots \ldots$.

Further, conditions (i) - (iii) uniquely determine the sets S_{n} and D_{n}, for all n.
3. Let \mathcal{B} be a collection of subsets of a set Ω.
(a) If \mathcal{B} is a σ-algebra, then \mathcal{B} is an algebra as well as a monotone class.
(b) If \mathcal{B} is an algebra as well as a monotone class, then \mathcal{B} is a σ-algebra.
(c) Show that if \mathcal{S} is any class of subsets of Ω, then there exists a smallest algebra $\mathcal{A}(\mathcal{S})$ (resp. monotone class $\mathcal{M}(\mathcal{S})$ containing \mathcal{S}.
4. Let \mathcal{A} be an algebra of subsets of a set Ω. Let $\Omega_{0} \subseteq \Omega$. Define $\mathcal{A} \cap \Omega_{0}=\left\{A \cap \Omega_{o}: A \in \mathcal{A}\right\}$. Show that $\mathcal{A} \cap \Omega_{0}$ is an algebra of subsets of Ω_{0}, and that $\mathcal{A} \cap \Omega_{0}$ is a σ-algebra if \mathcal{A} is. (In the case when $\Omega_{0} \in \mathcal{A}$, it is more natural and customary to write $\left.\mathcal{A}\right|_{\Omega_{0}}$ instead of $\mathcal{A} \cap \Omega_{0}$.) What if \mathcal{A} is a monotone class?
5. Let Ω be a non-empty set.
(a) How many distinct algebras of subsets of Ω exist, if Ω is a three element set?
(b) If \mathcal{A} is a finite algebra of subsets of (a possibly infinite set) Ω, what can you say about the number of distinct sets in \mathcal{A} ?
6. Let $\Omega=\mathbb{R}$, let \mathcal{S} denote the collection of intervals of the form (a,b], where $-\infty \leq a<b \leq \infty$ (where of course $(a, \infty]$ is to be interpreted as $(a, \infty))$. Show that a typical non-empty element of $\mathcal{A}(\mathcal{S})$, the algebra generated by \mathcal{S}, is of the form $\coprod_{k=1}^{n} I_{k}$, where $n=1,2, \ldots$ and $I_{k} \in \mathcal{S}$ for $1 \leq k \leq n$.
7. Assume \mathcal{B} is a σ-algebra on Ω. Let $B \subset \Omega$. Let $C=\mathcal{B} \cup\{B\}$. Show that $\sigma(C)=\left\{(B \cap U) \cup\left(B^{c} \cap V\right)\right.$: $U, V \in \mathcal{B}\}$
8. Assume \mathcal{B} is a σ-algebra on Ω. If $\left\{A_{1}, A_{2}, \ldots A_{n}\right\}$ is a partition of Ω, then describe $\sigma(\mathcal{B} \cup$ $\left.\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right)$.
9. Let $\mathcal{B}_{1}, \mathcal{B}_{2}$ be two σ-algebras on Ω. Show that $\sigma\left(\mathcal{B}_{1} \cup \mathcal{B}_{2}\right)=\sigma(\mathcal{C})$ where $\mathcal{C}=\left\{A_{1} \cup A_{2}: A_{1} \in\right.$ $\left.\mathcal{B}_{1}, A_{2} \in \mathcal{B}_{2}\right\}$.

10 . Let $n \in \mathbb{N}$. The σ-algebra \mathcal{B}^{n} on \mathbb{R}^{n} generated by open subsets of \mathbb{R}^{n}, is called the Borel σ-algebra of \mathbb{R}^{n}, and members of \mathcal{B}^{n} are called Borel sets.
(a) For $B \subset \mathbb{R}$ and $x \in \mathbb{R}$, let $x+B=\{x+y: y \in B\}$. Show that for every element $B \in \mathcal{B}, x+B$ is also a Borel set (i.e. an element of the Borel σ-algebra).
(b) Let $T: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $T(x)=x+1$. Show that $\tilde{\mathcal{B}}=\{B \in \mathcal{B}: T B=B\}$ is a σ-algebra on \mathbb{R}.
(c) More generally, if (X, d) is a meric space, and if $\mathcal{S}_{1}=\{B(x, r): x \in X, r>0\}$ is the set of open balls in X, and if \mathcal{S}_{2} is the set of open sets in X, verify that $\sigma\left(\mathcal{S}_{1}\right)=\sigma\left(\mathcal{S}_{2}\right)$ provided X is a separable metric space. In that case, this common σ-algebra is called the Borel σ-algebra of X, it is denoted by \mathcal{B}_{X}, and its members are called Borel sets.
(d) If $f: X \rightarrow X$ is a homeomorphism, then show that $E \in \mathcal{B}_{X} \Rightarrow f(E) \in \mathcal{B}_{X}$.
11. Let \mathcal{B} be the Borel σ-algebra on \mathbb{R}. Define $\mathcal{S}_{1}=\{(a, b):-\infty<a<b<\infty\}, \mathcal{S}_{2}=\{[a, b]:-\infty<$ $a<b<\infty\}, \mathcal{S}_{3}=\{[a, b):-\infty<a<b<\infty\}, \mathcal{U}=$ collection of all open sets in $\mathbb{R}, \mathcal{C}=$ collection of all closed sets in \mathbb{R}, and $\mathcal{K}=$ collection of all compact sets in \mathbb{R}. Show that $\mathcal{B}=\sigma(\mathcal{S})$, where \mathcal{S} is any one of the collections $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}, \mathcal{U}, \mathcal{C}$ or \mathcal{K}.
12. Let $\Omega=(0,1]$ and \mathcal{B} be the σ-algebra generated by open sets in Ω, i.e. the Borel σ-algebra on Ω. Show that $\tilde{\mathcal{B}}=\left\{B \subset \Omega: B \in \mathcal{B}\right.$ and is either disjoint from $\left(\frac{1}{2}, 1\right]$ or contains $\left.\left(\frac{1}{2}, 1\right]\right\}$ is a σ-algebra on Ω. Moreover $\tilde{\mathcal{B}}=\sigma\left(\right.$ collection of all intervals contained in $\left.\left(0, \frac{1}{2}\right)\right)$.
13. Let \mathcal{B}^{n} be the Borel σ-algebra in \mathbb{R}^{n} for $n \in \mathbb{N}$.
(a) Show that $\mathcal{B}^{1}=\sigma((a, b]:-\infty \leq a \leq b \leq \infty)$
(b) Show that $\mathcal{B}^{2}=\sigma((a, b] \times(c, d]:-\infty \leq a \leq b \leq \infty,-\infty \leq c \leq d \leq \infty)$
(c) Show that $\mathcal{B}_{1}=\left\{B \times \mathbb{R}: B \in \mathcal{B}^{1}\right\}$ and $\mathcal{B}_{2}=\left\{\mathbb{R} \times B: B \in \mathcal{B}^{1}\right\}$ are both σ-algebras on \mathbb{R}^{2} contained in \mathcal{B}^{2} and that $\mathcal{B}^{2}=\sigma\left(\mathcal{B}_{1} \cup \mathcal{B}_{2}\right)$.
(d) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map $(x, y) \rightarrow(y, x)$. Show that $\tilde{\mathcal{B}}=\left\{B \in \mathcal{B}^{2}: T B=B\right\}$ is a σ-algebra and find a generating set.
14. Suppose μ is a finitely additive set function defined on \mathcal{A}.
(i) Then, $\mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B) \forall A, B \in \mathcal{A}$.

In particular, if $\mu(\Omega)<\infty$ (so that there is no problem with subtraction), then

$$
\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)
$$

(ii) Can you write down a general formula for $\mu(A \cup B \cup C), A, B, C \in \mathcal{A}$, (or, more generally, for $\mu\left(\cup_{i=1}^{n} A_{i}\right)$, when $\left.\left\{A_{i}\right\}_{i=1}^{n} \subseteq \mathcal{A}\right)$ - under the assumption that $\mu(\Omega)<\infty$?
15. Let Ω be a countable set and $\mathcal{A}=2^{\Omega}$ be the collection of all subsets of Ω. Then,
(i) \mathcal{A} is a σ-algebra;
(ii) if $\mu: \mathcal{A} \rightarrow[0, \infty]$ is defined by $\mu(E)=$ 'number of elements in E ', then μ is a measure, and is called the counting measure on Ω (since μ counts the number of elements in a set).
(iii) If $\Omega=\left\{w_{1}, w_{2}, \ldots\right\}$ is an enumeration of Ω, and if Ω is infinite, let $A_{n}=\left\{w_{n}, w_{n+1}, \ldots\right\}$; notice that $A_{n} \downarrow \emptyset$ but

$$
\mu(\emptyset)=0 \neq \infty=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

(iv) If μ is a general possibly infinite measure defined on an algebra \mathcal{A} of subsets of any set Ω, and if $A, A_{n} \in \mathcal{A}, A_{1} \supseteq A_{2} \supseteq, \ldots, A=\cap_{n=1}^{\infty} A_{n}$, then show that $\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$ provided there exists some k so that $\mu\left(A_{k}\right)<\infty$.

