Problems to be turned in: 1, 4, 6, 12, 13, 15 Due: 18th August, 2008

- 1. If $\Omega \in \mathcal{A}$ and if $A, B \in \mathcal{A}$ implies that $A \cap B^c \in \mathcal{A}$, then show that \mathcal{A} is an algebra.
- 2. If \mathcal{A} is an algebra of sets in Ω , and if $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$, then there exist sequences $\{S_n\}_{n=1}^{\infty}, \{D_n\}_{n=1}^{\infty}$ of sets in \mathcal{A} such that:
 - (i) $S_1 \subset S_2 \subset S_3 \subset \dots$;
 - (ii) $D_n \cap D_m = \emptyset$ if $n \neq m$; and
 - (iii) $\bigcup_{k=1}^{n} E_k = \bigcup_{k=1}^{n} S_k = \bigcup_{k=1}^{n} D_k$, for $n = 1, 2, \dots$

Further, conditions (i) - (iii) uniquely determine the sets S_n and D_n , for all n.

- 3. Let \mathcal{B} be a collection of subsets of a set Ω .
 - (a) If \mathcal{B} is a σ -algebra, then \mathcal{B} is an algebra as well as a monotone class.
 - (b) If \mathcal{B} is an algebra as well as a monotone class, then \mathcal{B} is a σ -algebra.
 - (c) Show that if S is any class of subsets of Ω , then there exists a smallest algebra $\mathcal{A}(S)$ (resp. monotone class $\mathcal{M}(S)$ containing S.
- 4. Let \mathcal{A} be an algebra of subsets of a set Ω . Let $\Omega_0 \subseteq \Omega$. Define $\mathcal{A} \cap \Omega_0 = \{A \cap \Omega_o : A \in \mathcal{A}\}$. Show that $\mathcal{A} \cap \Omega_0$ is an algebra of subsets of Ω_0 , and that $\mathcal{A} \cap \Omega_0$ is a σ -algebra if \mathcal{A} is. (In the case when $\Omega_0 \in \mathcal{A}$, it is more natural and customary to write $\mathcal{A}|_{\Omega_0}$ instead of $\mathcal{A} \cap \Omega_0$.) What if \mathcal{A} is a monotone class?
- 5. Let Ω be a non-empty set.
 - (a) How many distinct algebras of subsets of Ω exist, if Ω is a three element set?
 - (b) If \mathcal{A} is a finite algebra of subsets of (a possibly infinite set) Ω , what can you say about the number of distinct sets in \mathcal{A} ?
- 6. Let $\Omega = \mathbb{R}$, let S denote the collection of intervals of the form (a,b], where $-\infty \leq a < b \leq \infty$ (where of course $(a, \infty]$ is to be interpreted as (a, ∞)). Show that a typical non-empty element of $\mathcal{A}(S)$, the algebra generated by S, is of the form $\prod_{k=1}^{n} I_k$, where $n = 1, 2, \ldots$ and $I_k \in S$ for $1 \leq k \leq n$.
- 7. Assume \mathcal{B} is a σ -algebra on Ω . Let $B \subset \Omega$. Let $C = \mathcal{B} \cup \{B\}$. Show that $\sigma(C) = \{(B \cap U) \cup (B^c \cap V) : U, V \in \mathcal{B}\}$
- 8. Assume \mathcal{B} is a σ -algebra on Ω . If $\{A_1, A_2, \ldots, A_n\}$ is a partition of Ω , then describe $\sigma(\mathcal{B} \cup \{A_1, A_2, \ldots, A_n\})$.
- 9. Let $\mathcal{B}_1, \mathcal{B}_2$ be two σ -algebras on Ω . Show that $\sigma(\mathcal{B}_1 \cup \mathcal{B}_2) = \sigma(\mathcal{C})$ where $\mathcal{C} = \{A_1 \cup A_2 : A_1 \in \mathcal{B}_1, A_2 \in \mathcal{B}_2\}$.
- 10. Let $n \in \mathbb{N}$. The σ -algebra \mathcal{B}^n on \mathbb{R}^n generated by open subsets of \mathbb{R}^n , is called the Borel σ -algebra of \mathbb{R}^n , and members of \mathcal{B}^n are called Borel sets.
 - (a) For $B \subset \mathbb{R}$ and $x \in \mathbb{R}$, let $x + B = \{x + y : y \in B\}$. Show that for every element $B \in \mathcal{B}$, x + B is also a Borel set (i.e. an element of the Borel σ -algebra).
 - (b) Let $T : \mathbb{R} \to \mathbb{R}$ be defined as T(x) = x + 1. Show that $\mathcal{B} = \{B \in \mathcal{B} : TB = B\}$ is a σ -algebra on \mathbb{R} .

- (c) More generally, if (X, d) is a meric space, and if $S_1 = \{B(x, r) : x \in X, r > 0\}$ is the set of open balls in X, and if S_2 is the set of open sets in X, verify that $\sigma(S_1) = \sigma(S_2)$ provided X is a separable metric space. In that case, this common σ -algebra is called the **Borel** σ -algebra of X, it is denoted by \mathcal{B}_X , and its members are called Borel sets.
- (d) If $f: X \to X$ is a homeomorphism, then show that $E \in \mathcal{B}_X \Rightarrow f(E) \in \mathcal{B}_X$.
- 11. Let \mathcal{B} be the Borel σ -algebra on \mathbb{R} . Define $\mathcal{S}_1 = \{(a, b) : -\infty < a < b < \infty\}$, $\mathcal{S}_2 = \{[a, b] : -\infty < a < b < \infty\}$, $\mathcal{S}_3 = \{[a, b) : -\infty < a < b < \infty\}$, $\mathcal{U} =$ collection of all open sets in \mathbb{R} , $\mathcal{C} =$ collection of all closed sets in \mathbb{R} , and $\mathcal{K} =$ collection of all compact sets in \mathbb{R} . Show that $\mathcal{B} = \sigma(\mathcal{S})$, where \mathcal{S} is any one of the collections $\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3, \mathcal{U}, \mathcal{C}$ or \mathcal{K} .
- 12. Let $\Omega = (0, 1]$ and \mathcal{B} be the σ -algebra generated by open sets in Ω , i.e. the Borel σ -algebra on Ω . Show that $\tilde{\mathcal{B}} = \{B \subset \Omega : B \in \mathcal{B} \text{ and is either disjoint from } (\frac{1}{2}, 1] \text{ or contains } (\frac{1}{2}, 1]\}$ is a σ -algebra on Ω . Moreover $\tilde{\mathcal{B}} = \sigma$ (collection of all intervals contained in $(0, \frac{1}{2})$).
- 13. Let Bⁿ be the Borel σ-algebra in Rⁿ for n ∈ N.
 (a) Show that B¹ = σ((a, b] : -∞ ≤ a ≤ b ≤ ∞)
 (b) Show that B² = σ((a, b] × (c, d] : -∞ ≤ a ≤ b ≤ ∞, -∞ ≤ c ≤ d ≤ ∞)
 (c) Show that B₁ = {B × R : B ∈ B¹} and B₂ = {R × B : B ∈ B¹} are both σ-algebras on R² contained in B² and that B² = σ(B₁ ∪ B₂).
 (d) Let T : R² → R² be the map (x, y) → (y, x). Show that B̃ = {B ∈ B² : TB = B} is a σ-algebra and find a generating set.
- 14. Suppose μ is a finitely additive set function defined on \mathcal{A} .

(i) Then, $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B) \ \forall A, B \in \mathcal{A}.$

In particular, if $\mu(\Omega) < \infty$ (so that there is no problem with subtraction), then

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B).$$

(ii) Can you write down a general formula for $\mu(A \cup B \cup C), A, B, C \in \mathcal{A}$, (or, more generally, for $\mu(\bigcup_{i=1}^{n} A_i)$, when $\{A_i\}_{i=1}^{n} \subseteq \mathcal{A}$) - under the assumption that $\mu(\Omega) < \infty$?

- 15. Let Ω be a countable set and $\mathcal{A} = 2^{\Omega}$ be the collection of all subsets of Ω . Then,
 - (i) \mathcal{A} is a σ -algebra;

(ii) if $\mu : \mathcal{A} \to [0, \infty]$ is defined by $\mu(E) =$ 'number of elements in E', then μ is a measure, and is called **the counting measure on** Ω (since μ counts the number of elements in a set).

(iii) If $\Omega = \{w_1, w_2, \ldots\}$ is an enumeration of Ω , and if Ω is infinite, let $A_n = \{w_n, w_{n+1}, \ldots\}$; notice that $A_n \downarrow \emptyset$ but

$$\mu(\emptyset) = 0 \neq \infty = \lim_{n \to \infty} \mu(A_n).$$

(iv) If μ is a general possibly infinite measure defined on an algebra \mathcal{A} of subsets of any set Ω , and if $A, A_n \in \mathcal{A}, A_1 \supseteq A_2 \supseteq, \ldots, A = \bigcap_{n=1}^{\infty} A_n$, then show that $\mu(A) = \lim_{n \to \infty} \mu(A_n)$ provided there exists some k so that $\mu(A_k) < \infty$.