Problems to be turned in: 1(d), 3,4 Due: November 12th, 2008

1. Suppose μ is a σ -finite measure and λ, η, ν are arbitrary measures (real, complex or σ -finite) on the measurable space (Ω, \mathcal{B}) .

We will say that ν is absolutely continuous with respect to μ if for all $E \in \mathcal{B}$, $\mu(E) = 0$ implies that $\mu(E) = 0$. This is denoted by $\nu \ll \mu$.

- (i) Show that $|\nu| \ll \mu$
- (ii) If $\lambda \ll \mu$ and $\nu \ll \mu$ then $\lambda + \nu \ll \mu$

We will say that λ, ν are mutually singular if there is partition of $\Omega = \Omega_1 \coprod \Omega_2$ such that $\lambda(\Omega_1) = 0 = \nu(\Omega_2)$. This is denoted by $\lambda \perp \nu$

- (a) Show that $|\lambda| \perp |\nu|$
- (b) If $\eta \perp \nu$ and $\lambda \perp \nu$ then $\lambda + \eta \perp \nu$
- (c) If $\lambda \ll \mu$ and $\nu \perp \mu$ then $\lambda \perp \nu$
- (d) If $\lambda \ll \mu$ and $\lambda \perp \mu$ then $\lambda = 0$
- 2. Suppose $(\Omega, \mathcal{B}, \mu)$ is a finite measure space and $p \geq 1$. Suppose $f : \Omega \to \mathbb{C}$ is a bounded measurable function. Show that there is a sequence of simple functions $\{s_n\}_{n=1}^{\infty}$ such that $|| s_n - f ||_p \to 0$. Further if $g \in L^p(\Omega, \mathcal{B}, \mu)$ then for every $\epsilon > 0$ there exists an $f : \Omega \to \mathbb{C}$, bounded measurable function, such that $|| f - g ||_p < \epsilon$.
- 3. Suppose ν is a finite positive measure and λ is an arbitrary measure on a measurable space (Ω, \mathcal{B}) . Then show that there is at most one pair of complex measures λ_1, λ_2 such that

$$\lambda_1 + \lambda_2 = \lambda, \lambda_1 << \mu, \lambda_2 \perp \mu$$

(Note: Existence was shown in class)

4. Suppose ν is a σ -finite positive measure and λ is an arbitrary measure on a measurable space (Ω, \mathcal{B}) . Then show that there is a unique pair of complex measures λ_1, λ_2 such that

$$\lambda_1 + \lambda_2 = \lambda, \lambda_1 << \mu, \lambda_2 \perp \mu$$