Problems to be turned in: 1(d), 3,4

Due: November 12th, 2008

1. Suppose μ is a σ-finite measure and λ, η, ν are arbitrary measures (real, complex or σ-finite) on the measurable space (Ω, \mathcal{B}).
We will say that ν is absolutely continuous with respect to μ if for all $E \in \mathcal{B}$, $\mu(E)=0$ implies that $\mu(E)=0$. This is denoted by $\nu \ll \mu$.
(i) Show that $|\nu| \ll \mu$
(ii) If $\lambda \ll \mu$ and $\nu \ll \mu$ then $\lambda+\nu \ll \mu$

We will say that λ, ν are mutually singular if there is partition of $\Omega=\Omega_{1} \amalg \Omega_{2}$ such that $\lambda\left(\Omega_{1}\right)=0=\nu\left(\Omega_{2}\right)$. This is denoted by $\lambda \perp \nu$
(a) Show that $|\lambda| \perp|\nu|$
(b) If $\eta \perp \nu$ and $\lambda \perp \nu$ then $\lambda+\eta \perp \nu$
(c) If $\lambda \ll \mu$ and $\nu \perp \mu$ then $\lambda \perp \nu$
(d) If $\lambda \ll \mu$ and $\lambda \perp \mu$ then $\lambda=0$
2. Suppose $(\Omega, \mathcal{B}, \mu)$ is a finite measure space and $p \geq 1$. Suppose $f: \Omega \rightarrow \mathbb{C}$ is a bounded measurable function. Show that there is a sequence of simple functions $\left\{s_{n}\right\}_{n=1}^{\infty}$ such that $\left\|s_{n}-f\right\|_{p} \rightarrow 0$. Further if $g \in L^{p}(\Omega, \mathcal{B}, \mu)$ then for every $\epsilon>0$ there exists an $f: \Omega \rightarrow \mathbb{C}$, bounded measurable function, such that $\|f-g\|_{p}<\epsilon$.
3. Suppose ν is a finite positive measure and λ is an arbitrary measure on a measurable space (Ω, \mathcal{B}). Then show that there is atmost one pair of complex measures λ_{1}, λ_{2} such that

$$
\lambda_{1}+\lambda_{2}=\lambda, \lambda_{1} \ll \mu, \lambda_{2} \perp \mu
$$

(Note: Existence was shown in class)
4. Suppose ν is a σ-finite positive measure and λ is an arbitrary measure on a measurable space (Ω, \mathcal{B}). Then show that there is a unique pair of complex measures λ_{1}, λ_{2} such that

$$
\lambda_{1}+\lambda_{2}=\lambda, \lambda_{1} \ll \mu, \lambda_{2} \perp \mu
$$

