Due: August 11th, 2008

- 1. Cardinality: For any two non-empty sets X, Y We say "cardinality of X", written card(X), is less than or equal to card(Y) if there is an injection $f: X \to Y$.
 - (a) Show for any two non-empty sets $card(X) \leq card(Y)$ or $card(Y) \leq card(X)$.
 - (b) Show for any two non-empty sets $card(X) \leq card(Y)$ iff $card(Y) \geq card(X)$.
 - (c) Show for any two non-empty sets $\operatorname{card}(X) = \operatorname{card}(Y)$ iff there is a bijection $\phi: X \to Y$.
 - (d) A set X is countable if $\operatorname{card}(X) \leq \operatorname{card}(\mathbb{N})$.. $\operatorname{card}(X) = n$ if and only if $\operatorname{card}(X) = \operatorname{card}(\{1, 2, \dots, n\})$, such sets are called countably finite.
 - (e) Let $c = \operatorname{card}(\mathbb{R})$. Show that $\operatorname{card}(P(\mathbb{N})) = c$.
 - (f) Suppose X is a set such that card(X) > c then X is uncountable.
- 2. **Real Numbers:** Let \mathbb{R} be the set of real numbers and $\bar{R} = \{\infty\} \cup \mathbb{R} \cup \{-\infty\}$ be the extended real numbers.
 - (a) A set U in \mathbb{R} is said to be open if for every $x \in U$ there is an $\epsilon > 0$ such that $(x \epsilon, x + \epsilon) \subset U$. Show that every open set in \mathbb{R} is a countable disjoint union of open intervals.
 - (b) Define what is meant by a sequence in \mathbb{R} . Suppose $\{x_n\}$ is a sequence in \mathbb{R} then define the concept of limit, limit superior and limit inferior. For any two sequences $\{x_n\}$, $\{y_n\}$ show that

$$\lim_{n\to\infty}\sup(x_n+y_n)\leq \limsup_{n\to\infty}x_n+\limsup_{n\to\infty}y_n.$$

(c) Let X be an arbitrary set and $f: X \to [0, \infty]$. We define

$$\sum_{x \in X} f(x) = \sup \{ \sum_{x \in F} f(x) : F \subset X, F \text{ finite} \}.$$

Let $A=\{x: f(x)>0\}$. If A is uncountable, then show that $\sum_{x\in X} f(x)=\infty$. If A is countably infinite, then show that $\sum_{x\in X} f(x)=\sum_{n=1}^{\infty} f(g(n))$ where $g:\mathbb{N}\to A$ is any bijection and the sum on the right is an ordinary infinite series.

- 3. Metric Spaces: Let X, ρ be a metric space, $E \subset X$, and $x \in X$. Then show:
 - (a) $x \in \bar{E}$

 \Leftrightarrow

 $B(r,x) \cap E \neq \emptyset$ for all r > 0

 \Leftrightarrow

there is a sequence $\{x_n\}$ in E which converges to x.

(b) Define what is meant by "E is complete and totally bounded". E is complete and totally bounded

 \leftrightarrow

every sequence in E has a subsequence which converges to a point of E

 \Leftrightarrow

if $\{V_{\alpha}\}_{{\alpha}\in A}$ is a cover of E by open sets, there is a finite set $F\subset A$ such that $\{V_{\alpha}\}_{{\alpha}\in F}$ covers E.

- (c) Define what is meant by "X is a complete metric space". Suppose X is a complete metric space. Show that: E is a closed set $\Leftrightarrow E$ is a complete subset of X.
- (d) Suppose $X = \mathbb{R}^n$ equipped with the usual metric. Show that every closed and bounded subset of X is compact.