- 1. Find an example of a sequence that satisfies the below statements and then write the below statements using logical notation:
 - (a) For every $\epsilon > 0$ there are infinitely many n such that distance of a_n to 0 is less than ϵ .
 - (b) For every $\epsilon > 0$ for all but finitely many n the distance of a_n to 0 is less than ϵ .
 - (c) For every $\epsilon > 0$, all but finitely many elements of the sequence a_n are above $11 + \epsilon$ and all but finitely many element are below 5ϵ .
- 2. Provide two examples (if any) of sequences $\{a_n\}$ that satisfy each of the statements below.
 - (a) A sequence that converges to 0 which has the property that infinitely many elements are negative numbers and infinitely many elements are positive numbers.
 - (b) A non-constant sequence that does not converge.
 - (c) For all $\epsilon > 0$, there are infinitely many $n \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$

for L = -1, 0, 3 and $a_n \notin \{-1, 0, 3\}$ for infinitely many $n \in \mathbb{N}$.

- (d) A sequence that converges to 0 which has the property that all but finitely many elements are negative.
- (e) For all $\epsilon > 0$, for all but finitely many $n \in \mathbb{N}$ $a_n < 5 + \epsilon$ and $a_n > -11 \epsilon$.
- (f) For all M > 0: there are infinitely many $n \in \mathbb{N}$ such that $a_n > M$ and there are infinitely many $n \in \mathbb{N}$ such that $a_n < -M$.
- 3. If $f:\mathbb{R}\to\mathbb{R}$ is unbounded then construct a sequence $\{a_n\}$ such that $\lim_{n\to\infty} |f(a_n)|=\infty$
- 4. It is important to understand the logical implication of $(P \Longrightarrow Q \text{ along with the operations of the Converse } (Q \Longrightarrow P)$, the Contrapositive $(\neg Q \Longrightarrow \neg P)$ and the negated implication $\neg P(\Longrightarrow Q)$. Please fill in the truth table below to illustrate the differences between these operations:

P	Q	$P \Longrightarrow Q$	$Q \Longrightarrow P$	$\neg Q \Longrightarrow \neg P$	$\neg(P \Longleftrightarrow Q)$
Т	Т				
Т	F				
F	Т				
F	F				