Name:

Score:

1. Let $x_n = \begin{cases} 3 + \frac{1}{n} & \text{if } n \text{ is odd} \\ -6 - \frac{1}{n} & \text{if } n \text{ is even} \end{cases}$

Fill in the boxes:

1. The set of limit points E =

 $2. \ S_k = \sup\{x_n : n \geq k\} = \boxed{\qquad} \text{ and } \lim_{k \to \infty} S_k = \boxed{\qquad} = \boxed{\qquad} (E).$

4. Fix $\epsilon = 0.001$

(a) If we take N = then for $n \ge N$, $x_n < 3 + \epsilon$

(b) Let $M \in \mathbb{N}$. If we take m = 1 then $m \geq M$ and $x_m > 3 - \epsilon$

From (a) and (b) we can conclude that

(i) For all many $n \in \mathbb{N}$ we have x_n $3 + \epsilon$

(ii) For $many n \in \mathbb{N}$ we have x_n $3 - \epsilon$

5. Fix $\epsilon = 0.005$

(a) If we take N = then for $n \ge N$, $x_n > -6 - \epsilon$

(b) Let $M \in \mathbb{N}$. If we take m = 6 then $m \geq M$ and $x_m < -6 + \epsilon$

From (a) and (b) we can conclude that

(i) For $many n \in \mathbb{N}$ we have $x_n = -6 + \epsilon$

(ii) For all many $n \in \mathbb{N}$ we have x_n -6-6

¹No justification is required but please do all rough/fair work on the sheet and the backside