Question: Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers. Let $\{z_n\}_{n=1}^{\infty}$ be given by

$$z_n = x_n + y_n$$

for all $n \ge 1$. Show that

 $\limsup_{n \to \infty} z_n \le \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n$

Solution: Let $X = \limsup_{n \to \infty} x_n$, $Y = \limsup_{n \to \infty} y_n$, $Z = \limsup_{n \to \infty} z_n$.

As the sequences are bounded both X and Y are real numbers. Further $\{z_n\}_{n=1}^{\infty}$ is also bounded and so Z is also a real number. We will show by contradiction that $Z \leq X + Y$.

Suppose Z > X + Y. Let $\epsilon = (Z - (X + Y))/2$. As Z is a limit point of $\{z_n\}_{n=1}^{\infty}$, there exist infinitely many p for which $|z_p - Z| < \epsilon$. That is for all $N \ge 1$ there exists $p \ge N$ such that

$$Z - \epsilon < z_p < z + \epsilon.$$

So for all $N \ge 1$ there exists $p \ge N$ such that

$$z_p > Z - \epsilon = (X + Y + Z)/2 \tag{1}$$

As $X = \limsup_{n \to \infty} x_n$, only a finite number of terms of $\{x_n\}_{n=1}^{\infty}$ are greater than $X + \epsilon/2$, so there exists $N_1 > 1$ such that for all $k \ge N_1$ we have

$$x_k < X + \epsilon/2;$$

and as $Y = \limsup_{n \to \infty} y_n$, only a finite number of terms of $\{y_n\}_{n=1}^{\infty}$ are greater than $Y + \epsilon/2$, so there exists $N_2 > 1$ such that for all $k \ge N_2$ we have

$$y_k < Y + \epsilon/2;$$

Therefore $N_3 = \max(N_1, N_2)$ we have for all $k \ge N_3$

$$z_k = x_k + y_k < X + Y + \epsilon = (X + Y + Z)/2.$$
(2)

Take $N = N_3 + 1$ in (1), to obtain a

$$p_0 \ge N_3 + 1$$
 such that $z_{p_0} > (X + Y + Z)/2$

and as $p_0 > N_3$ from (2), we have $z_{p_0} < (X + Y + Z)/2$.

This is a contradiction. So

$$Z \le X + Y.$$