1. Let $x_n = \begin{cases} 3 + \frac{1}{n} & \text{if } n \text{ is odd} \\ -6 - \frac{1}{n} & \text{if } n \text{ is even} \end{cases}$

Fill in the boxes:

1. The set of limit points $E = |\{3,-6\}|$

2.
$$S_k = \sup\{x_n : n \ge k\} =$$
 if k is odd then $3 + \frac{1}{k}$ and $\lim_{k \to \infty} S_k = [3] = [\sup](E)$.

3.
$$I_k = \inf\{x_n : n \ge k\} =$$
 if k is odd then $-6 + \frac{1}{k+1}$
if k is even then $-6 + \frac{1}{k}$ and $\lim_{k \to \infty} I_k = -6 = \overline{\inf}(E)$

4. Fix $\epsilon = 0.001$

- (a) If we take N = 1000 then for $n \ge N$, $x_n < 3 + \epsilon$
- (b) Let $M \in \mathbb{N}$. If we take $m = \boxed{2M+1}$ then $m \ge M$ and $x_m > 3 \epsilon$

From (a) and (b) we can conclude that

- (i) For all but finitely many many $n \in \mathbb{N}$ we have $x_n < 3 + \epsilon$
- (ii) For infinitely many many $n \in \mathbb{N}$ we have $x_n > 3 \epsilon$
- 5. Fix $\epsilon = 0.005$
 - (a) If we take N = 200 then for $n \ge N$, $x_n > -6 \epsilon$
 - (b) Let $M \in \mathbb{N}$. If we take $m = \boxed{2M}$ then $m \ge M$ and $x_m < -6 + \epsilon$

From (a) and (b) we can conclude that

- (i) For infinitely many $n \in \mathbb{N}$ we have $x_n < -6 + \epsilon$
- (ii) For all all but finitely many many $n \in \mathbb{N}$ we have $x_n \ge -6 \epsilon$

 $^{^1\}mathrm{No}$ justification is required but please do all rough/fair work on the sheet and the backside