WM18	Writing of Mathematics ⁵	S	emester I 2019/20
http://www.isibang.ac.i	$n/\!\!\sim\!athreya/Teaching/wom19$	Homework 9	Page 1 of 2

Due Date: October, 17th 2019

I. Let $\{x_n\}_{n=1}^{\infty} \{y_n\}_{n=1}^{\infty}$ and $\{z_n\}_{n=1}^{\infty}$ be three sequences. Let $z_n = x_n + y_n$. Let E, F, G be the limit points of $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$, and $\{z_n\}_{n=1}^{\infty}$ respectively. Find the sets in each of the following cases:

Then please fill the following tables:

(i) when $x_n = \frac{1}{n}$, $y_n = (-1)^n$ for all $n \ge 1$.

E =	F =	G =
$\sup(E) =$	$\sup(F) =$	$\sup(G) =$
$M_k = \sup\{x_n : n \ge k\} =$	$N_k = \sup\{y_n : n \ge k\} =$	$O_k = \sup\{z_n : n \ge k\} =$
$\lim_{k \to \infty} M_k =$	$\lim_{k \to \infty} N_k =$	$\lim_{k \to \infty} O_k =$

(ii) when $x_n = 3$, $y_n = -3$ for all $n \ge 1$.

$$E =$$

 $\sup(E) =$
 $M_k = \sup\{x_n : n \ge k\} =$ $F =$
 $\sup(F) =$
 $N_k = \sup\{y_n : n \ge k\} =$
 $\lim_{k \to \infty} N_k =$ $G =$
 $\sup(G) =$
 $O_k = \sup\{z_n : n \ge k\} =$
 $\lim_{k \to \infty} O_k =$

(iii) when $x_n = \begin{cases} 3 + \frac{1}{n} & \text{if } n \text{ is odd} \\ -6 - \frac{1}{n} & \text{if } n \text{ is even} \end{cases}$ and $y_n = \begin{cases} -10 + \frac{1}{n} & \text{if } n \text{ is odd} \\ 3 - \frac{1}{n} & \text{if } n \text{ is even} \end{cases}$

E =	F =	G =
$\sup(E) =$	$\sup(F) =$	$\sup(G) =$
$M_k = \sup\{x_n : n \ge k\} =$	$N_k = \sup\{y_n : n \ge k\} =$	$O_k = \sup\{z_n : n \ge k\} =$
$\lim_{k \to \infty} M_k =$	$\lim_{k \to \infty} N_k =$	$\lim_{k\to\infty}O_k=$

- 1. Can you conclude any relationship between $\sup(E), \sup(F)$ and $\sup(G)$?
- 2. Can you provide a proof of the relationship in general ?

 $^{{}^{5}}$ Office hours: I will be in my office from 9am-10am Monday, 8am-9am Tue and Thu, 10:00-11:00am Tue to answer any questions that you may have. Please feel free to drop by during these times to clarify any doubts that you may have.

- 1. Can you conclude any relationship between $\limsup_{n \to \infty} a_n^{\frac{1}{n}}$ and $\limsup_{n \to \infty} \frac{a_{n+1}}{a_n}$?
- 2. Can you provide a proof of the relationship in general ?

⁶Office hours: I will be in my office from 9am-10am Monday, 8am-9am Tue and Thu, 10:00-11:00am Tue to answer any questions that you may have. Please feel free to drop by during these times to clarify any doubts that you may have.