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Due Date: October, 17th 2019

I. Let {xn}∞n=1{yn}∞n=1and {zn}∞n=1be three sequences. Let zn = xn + yn. Let E,F,G be the limit points of
{xn}∞n=1, {yn}∞n=1, and{zn}∞n=1respectively. Find the sets in each of the following cases:

Then please fill the following tables:

(i) when xn = 1
n
, yn = (−1)n for all n ≥ 1.

E =

sup(E) =

Mk = sup{xn : n ≥ k} =

lim
k→∞

Mk =

F =

sup(F ) =

Nk = sup{yn : n ≥ k} =

lim
k→∞

Nk =

G =

sup(G) =

Ok = sup{zn : n ≥ k} =

lim
k→∞

Ok =

(ii) when xn = 3, yn = −3 for all n ≥ 1.

E =

sup(E) =

Mk = sup{xn : n ≥ k} =

lim
k→∞

Mk =

F =

sup(F ) =

Nk = sup{yn : n ≥ k} =

lim
k→∞

Nk =

G =

sup(G) =

Ok = sup{zn : n ≥ k} =

lim
k→∞

Ok =

(iii) when xn =

�
3 + 1

n
if n is odd

−6− 1
n

if n is even
and yn =

�
−10 + 1

n
if n is odd

3− 1
n

if n is even

E =

sup(E) =

Mk = sup{xn : n ≥ k} =

lim
k→∞

Mk =

F =

sup(F ) =

Nk = sup{yn : n ≥ k} =

lim
k→∞

Nk =

G =

sup(G) =

Ok = sup{zn : n ≥ k} =

lim
k→∞

Ok =

1. Can you conclude any relationship between sup(E), sup(F ) and sup(G) ?

2. Can you provide a proof of the relationship in general ?

5Office hours: I will be in my office from 9am-10am Monday, 8am-9am Tue and Thu, 10:00-11:00am Tue to answer
any questions that you may have. Please feel free to drop by during these times to clarify any doubts that you may have.
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II. For any {an}∞n=1, we wish to understand the behaviour of
an+1

an
and a

1
n
n .

Fill the following table when:

(a) an = 1
22k−1 if n = 2k − 1, for k ≥ 1 and an = 1

22k−2 if n = 2k, for k ≥ 1.

an+1

an
when n is odd =

an+1

an
when n is even =

E= The set of limit points of
an+1

an
=

sup(E) = inf(E) =

a
1
n
n when n is odd =

a
1
n
n when n is even =

F= The set of limit points of a
1
n
n =

sup(F ) = inf(F ) =

(b) an = 1
2k

if n = 2k − 1, for k ≥ 1 and an = 1
3k

if n = 2k, for k ≥ 1.

an+1

an
when n is odd =

an+1

an
when n is even =

E= The set of limit points of
an+1

an
=

sup(E) = inf(E) =

a
1
n
n when n is odd =

a
1
n
n when n is even =

F= The set of limit points of a
1
n
n =

sup(F ) = inf(F ) =

(c) an =





n if n = 2k − 1, k ≥ 1

1
3n

if n = 2k, k ≥ 1
.

an+1

an
when n is odd =

an+1

an
when n is even =

E= The set of limit points of
an+1

an
=

sup(E) = inf(E) =

a
1
n
n when n is odd =

a
1
n
n when n is even =

F= The set of limit points of a
1
n
n =

sup(F ) = inf(F ) =

1. Can you conclude any relationship between lim sup
n→∞

a
1
n
n and lim sup

n→∞

an+1

an
?

2. Can you provide a proof of the relationship in general ?

6Office hours: I will be in my office from 9am-10am Monday, 8am-9am Tue and Thu, 10:00-11:00am Tue to answer
any questions that you may have. Please feel free to drop by during these times to clarify any doubts that you may have.


