Negation of statement A: a statement B whose assertion specifically denies the truth of statement A.

- 1. For the following statements below write down their negations in words (like the statements).
 - (a) If A holds, then B holds.
 - (b) A is true only if B is true.
 - (c) A is true whenever B is true.
 - (d) A is false only if B is false.
 - (e) A is a necessary condition for B.
 - (f) A is necessary and sufficient for B.
 - (g) A holds if and only if B holds

We introduce the following **Logical Notation:** \forall to mean for all; \exists to mean there exists; \implies to mean implies; and \iff to mean equivalent. Here is an example of usage of notation.

Statement : $f(x, y) \neq 0$ whenever $x \neq 0$ and $y \neq 0$. Statement in logical Notation: $\forall x, y \in \mathbb{R}, [x \neq 0, y \neq 0 \implies f(x, y) \neq 0]$

- 2. As indicated above: (i)Translate the following sentences into logical notation, (ii) negate the statement written in logical notation, and (iii) translate the negated statement back into English.
 - (a) For all $M \in \mathbb{R}$ there exists $x \in \mathbb{R}$ such that $|f(x)| \ge M$.
 - (b) For all $M \in \mathbb{R}$ there exists $x \in \mathbb{R}$ such that for all y > x we have f(y) > M.
 - (c) For all $x \in \mathbb{R}$ there exists $y \in \mathbb{R}$ such that f(y) > f(x).
 - (d) For every $\epsilon > 0$ there exists $x_0 \in \mathbb{R}$ such that $|f(x)| < \epsilon$ for all $x > x_0$.
 - (e) For every $\epsilon > 0$ there exists $\delta > 0$ such that $|f(x) f(y)| < \epsilon$ whenever $|x x_0| < \delta$.
- 3. We say $\lim_{x\to 0} f(x) = 0$ if

For every $\epsilon > 0$ there exists $\delta > 0$ such that $|f(x)| < \epsilon$ whenever $|x| < \delta$.

Consider the following statements:

- (a) For every $\epsilon > 0$ there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, $|x| < \delta$ implies $|f(x)| < \epsilon$.
- (b) For every $\delta > 0$ there exists $\epsilon > 0$ such that for all $x \in \mathbb{R}$, $|x| < \delta$ implies $|f(x)| < \epsilon$.
- (c) There exists $\delta > 0$ such that for all $\epsilon > 0$ and for all $x \in \mathbb{R}$, $|x| < \delta$ implies $|f(x)| < \epsilon$.
- (d) For every $\epsilon > 0$ and for all $x \in \mathbb{R}$, there exists $\delta > 0$ such that $|x| < \delta$ implies $|f(x)| < \epsilon$.

Decide which of the above versions are equivalent to the definition of

$$\lim_{x \to 0} f(x) = 0$$

and which are not. For those that are not equivalent determine, in as simple a language as possible, what they really define. Find examples (if they exist) of functions that satisfy the definition.