Homework 10 Due Date: October 25th, 2019

1. Let $n \ge i$, and $\phi : \mathbb{Z} \to \mathbb{Z}_n$ be given by $\phi(i) = i \mod n$. Show that

$$\phi(i+j) = \phi(i) +_n \phi(j)$$
 and $\phi(i \cdot j) = \phi(i) \cdot_n \phi(j)$.

- 2. Write out the cycle decomposition of each element in S_4 . Find the order of each element.
- 3. Find all elements of $G = \mathbb{Z}_9$ which generates G as a cyclic group. Find all subgroups of G and also find a generator in each case.
- 4. Let p be a prime number. Let $a \in \mathbb{N}$ not divisible by p. Show that $f : \mathbb{Z}_p \to \mathbb{Z}_p$ given by f(x) = ax is a bijection.
- 5. Let G be a set endowed with an operation \cdot . It is given that there is an $e \in G$ such that $g \cdot e = g$ for all $g \in G$ and for all $g \in G$ there is a $h \in G$ such that $g \cdot h = e$. Is (G, \cdot) necessarily a group ?

Extra Credit Puzzles:

- 1. *The coins Problem.* Given several piles of 1 Rupee coins from the ISI-Canteen cashier, we create a new collection by removing one coin from each old pile to make a new pile. Each original pile shrinks by one. That is, for example: if the original collection had four piles of 1,1,2,5 then the new set of piles will have 1,4,4.
 - (a) Which lists of sizes (order is not important) are unchanged under this operation ?
 - (b) Let S_n be the set of non decreasing lists summing to n. Let $f: S_n \to S_n$ be the function defined on S_n by the operation above.
 - (i) Draw the functional digraph of f when n = 6.
 - (ii) Determine all values of n such that f is injective. Determine all values of n such that f is surjective.
- 2. The darts Problem. Suppose a dart board has regions with values a and b, where a and b are natural numbers that are relatively prime. What is the largest integer k that cannot be achieved by summing the values of thrown darts? We seek k such that ma + nb = k has no solutions in nonnegative integers m, n, but ma + nb = j does have such a solution whenever j is an integer larger than k.

⁴**Office hours:** I will be in my office from 8:15-9am on Tue,Wed, Thu and from 2-3pm on Wed to answer any questions that you may have. Please feel free to drop by during these times to clarify any doubts that you may have.