- 1. Let $f(x) = \frac{x}{1+x^2}$ for all $x \in \mathbb{R}$. Find the
 - (a) Zeros of f, f', f''.
 - (b) Identify regions where: f is positive; f' is positive; and f'' is positive.
 - (c) Identify: Critical points ; inflection points; regions where the graph is concave up and down.
 - (d) Identify $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$
 - (e) Draw a rough-sketch of graph of f

- 2. We are given $y = ax^2 + bx + c$. In each of the cases below, draw a rough sketch of y:
 - (i) $b^2 4ac > 0$ and a > 0, (ii) $b^2 4ac > 0$ and a < 0,
 - (iii) $b^2 4ac = 0$ and a < 0, (iv) $b^2 4ac = 0$ and a > 0,

(v) $b^2 - 4ac < 0$ and a < 0, (vi) $b^2 - 4ac < 0$ and a > 0. Distinguish each w.r.t. to y attaining its global maximum or minimum and being concave up or down.

3. Let $f : \mathbb{R} \to \mathbb{R}$. Suppose f is differentiable two times, then show that

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2}f''(\xi),$$

for any $x, x_0 \in \mathbb{R}$ and ξ is a point between x and x_0 . In addition, if the second derivative of f is continuous, $f'(x_0) = 0$, $f''(x_0) < 0$, then show that f has a local maximum at x_0 .