- 1. Let us define the following terms:-
 - $S \subseteq R$ is bounded if there exists a positive real number M such that $|x| \leq M$ for all $x \in S$.
 - $f : \mathbb{R} \to \mathbb{R}$ is bounded if there exists M such that $|f(x)| \le M$ for all $x \in \mathbb{R}$.

Provide an example of a set $S \subseteq \mathbb{R}$ that is bounded; a set $S \subseteq \mathbb{R}$ that is not bounded; $f : \mathbb{R} \to \mathbb{R}$ that is bounded; and $f : \mathbb{R} \to \mathbb{R}$ that is not bounded.

Write the above definitions in logical notation.

- 2. Write a statement in logical notation that is equivalent to saying
 - (a) $f : \mathbb{R} \to \mathbb{R}$ is not bounded.
 - (b) $S \subseteq \mathbb{R}$ is not bounded.
- 3. Decide if there exists an example of a function that satisfies (b) but not (a) and if there exists an example of a function that satisfies (a) but not (b).
 - (a) For all $M \in \mathbb{R}$ there exists $x \in \mathbb{R}$ such that $|f(x)| \ge M$.
 - (b) For all $M \in \mathbb{R}$ there exists $x \in \mathbb{R}$ such that for all y > x we have |f(y)| > M.
- 4. Let $A \subset \mathbb{R}$.
 - (a) What is meant by saying $\alpha = \sup(A)$?

i. Write down a logical statement that states that s is an upper bound of A but not the supremum of A. Can such an s as above be an element of A?

- (b) Find the infimum and supremum of the sets
 - i. $B = \{2, 3, 4\}$
 - ii. $S = \{\frac{1}{n}: n \in \mathbb{N}\} \cup \{50 + \frac{1}{n}: n \in \mathbb{N}\}$
 - iii. $A = \{1 \frac{(-1)^n}{n} : n \in \mathbb{N}\}$
- (c) Let α be $\sup(A)$ and $B \subset \mathbb{R}$ $\beta = \sup(B)$. Let $C = \{a \cdot b : a \in A, b \in B\}$. Is the $\sup(C) = \alpha\beta$?